MITSUBISHI ELECTRIC

Electronic Multi-Measuring Instrument MODEL

ME96SSRB-MB

User's Manual: Detailed Edition

-Before use, you should read this user's manual carefully to properly operate this instrument.
Be sure to forward the manual to the end user.

Check your delivery

The following table shows a list of the instrument accessories.
When unpacking your package, check all the contents.

Contents	Quantity	Specification
User's Manual (Digest version)	1	\square
Attachment lug (with a screw)	2	

Optional plug-in module

The following table shows a list of optional plug-in modules available for this product.
Installing the optional plug-in module enables various input or output. If you need it, consult with your supplier. ME-4201-NS96, ME-0052-NS96, and ME-0040C-NS96, which are optional plug-in modules for ME96NSR and ME96NSR-MB, are not available for ME96SSRB-MB.

Model type	I/O specifications					
	Analog output	Pulse/Alarm output	Digital input	Digital output	Communication	Logging function
ME-4210-SS96B	4 ch	2 ch	1 ch	-	-	-
ME-0040C-SS96	-	-	4 ch	-	CC-Link	-
ME-0052-SS96	-	-	5 ch	2 ch	-	-
ME-0000MT-SS96	-	-	-	-	MODBUS TCP	-
ME-0000BU-SS96	-	-	-	-	-	6 items
ME-0000BU25-SS96	-	-	-	-	-	25 items

I/O Parts	Specifications	Model type			
Analog output	Output: 4 mA to 20 mA Load resistance: 600Ω or less	ME-4210-SS96B			
Pulse/Alarm output	No-voltage a-contact Contact Capacity: $35 \mathrm{~V} \mathrm{DC}$,0.1 A or less	ME-4210-SS96B			
Digital input	Contact Capacity: $24 \mathrm{~V} \mathrm{DC} \mathrm{(19} \mathrm{~V} \mathrm{DC} \mathrm{to} \mathrm{30} \mathrm{V} \mathrm{DC)}$,7 mA or less Input Pulse Width: 30 ms or more	ME-4210-SS96B ME-0040C-SS96			
Digital output	No-voltage a-contact Contact Capacity: $35 \mathrm{~V} \mathrm{DC}$,0.2 A or less	ME-0052-SS96	$	$	MS96
:---					

In this manual, the operation is also explained when the optional plug-in module is installed.

- The instrument measures load status by wiring the secondary sides of VT (Voltage Transformer) and CT (Current Transformer) in the power receiving and distribution system and displays various measured values.
- The instrument supports Active Energy Class 0.5 S and harmonic measurement (1st to 19 th).
- Active energy can be measured by dividing into three time periods such as peak, off-peak, and shoulder. (Periodic Active Energy)
- This instrument enables measurement of active energy/reactive energy/ apparent energy for any period (interval). (Rolling demand active power/Rolling demand reactive power/Rolling demand apparent power)
- The password protection prevents undesired setting change and measured data deletion.
- The transmission function (MODBUS RTU communication, CC-Link communication, or MODBUS TCP commination) transmits measured data to superior monitoring systems.
*CC-Link communication is available when ME-0040C-SS96 (optional plug-in module) is installed.
*MODBUS TCP commination is available when ME-0040C-SS96 (optional plug-in module) is installed.
- The logging function enables to back up measured values in a SD memory card even when a MODBUS RTU communication error occurs.
*It is available when ME-0000BU-SS96 or ME-0000BU25-SS96 (optional plug-in module) is installed.
- This instrument itself can output key measuring elements such as current, voltage, active power, power factor, and active energy at the power receiving point by installing an optional plug-in module with analog output/pulse output function. It is ideal for remote monitoring.
*It is available when ME-4210-SS96B (optional plug-in module) is installed
- The built-in logging function provides the logging of measured values, alarm logs, and system logs into this instrument.
- The standard complies with the requirements of CE marking, UL standards, KC mark, and FCC/IC.
- The support function for checking input wiring enables to determine the wiring condition in the test mode. When either a voltage input or current input are incorrectly wired, the incorrect wiring part is displayed on the screen and it also shows a current phase angle, a voltage phase angle, and each value of active power, voltage, and current.

Trademark

MODBUS is a trademark of Schneider Electric USA Inc.
Other company and product names herein are trademarks or registered trademarks of their respective owners. In the text, trademark symbols such as 'TM' and ' $®$ ' may not be written.
Check your delivery 1
Optional plug-in module 1
Features 2
Trademark 2
Table of Contents 3
Safety Precautions 5
EMC Directive Instruction 9
Precautions for KC mark 9
Table for measuring element code 10

1. Name and Function of Each Section 11
1.1. Name of Each Part 11
1.2. LCD Function 14
1.3. Function of Operation Buttons 15
1.4. LED Display of Optional Plug-in Module 17
2. Each Mode Function 19
3. How to Set up 20
3.1. Setting Flow 20
3.2. Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current) 22
3.3. Setting Menu 2: Communication Settings (MODBUS RTU Communication Settings) 26
3.4. Setting Menu 2: Communication Settings (CC-Link Communication Settings) 27
3.5. Setting Menu 2: Communication Settings (MODBUS TCP Communication Settings) 28
3.6. Setting Menu 3: Display Settings (Settings for Active/Reactive Energy and Harmonic Measurement) 30
3.7. Setting Menu 4: LCD Settings (Settings for Model Display, Version Display, Backlight, and Display Update Time) 32
3.8. Setting Menu 5: Pulse/Alarm Settings (Settings for Upper/Lower Limit Alarm, Motor Starting Current Mask Function, and Pulse Output) 33
3.9. Setting Menu 6: Built-in Logging Settings 38
3.10. Setting Menu 6: Analog Output Settings 41
3.11. Setting Menu 6: Optional Logging settings 45
3.12. Setting Menu 7: Settings for Periodic active Energy, Rolling Demand, and Digital Input/Output 47
3.13. Setting Menu 8: Special Settings (Settings for Operating Time, IEC Mode, and CO_{2} equivalent) 49
3.14. Setting Menu CL: Preset Time Settings 51
3.15. Setting Confirmation Menu 1 to 9: Confirming the Settings in the Setting Menu 1 to 8 and 9 Test Mode 53
3.16. Initialization of Related Items by Changing a Setting 54
3.17. Initialization of All Settings 55
3.18. Settings for Special Display Pattern P00 56
3.19. Example for Easy Setup 58
4. How to Use Test Mode 60
4.1. Test Menu 1: Communication Test 61
4.2. Test Menu 2: Alarm Output/Digital Output Test 62
4.3. Test Menu 3: Zero/Span Adjustment for Analog Output 63
4.4. Test Menu 4: Analog Output Test 64
4.5. Test Menu 5: Pulse Output Test 65
4.6. Test Menu 6: Function for Determining Incorrect Wiring 66
4.6.1. Incorrect Wiring Patterns Detected by (1Pattern display of incorrect wiring 69
5. Operation 72
5.1. Basic Operation 72
5.1.1. How to Switch the Measurement Screen 72
5.1.2. How to Switch Phase Display 72
5.1.3. How to Display the Cyclic Mode 73
5.1.4. Harmonics Display 74
5.1.5. Maximum/Minimum Value Display 75
5.1.6. How to Display Maximum/Minimum Value 75
5.1.7. How to Clear Maximum/Minimum Value 75
5.1.8. Active Energy/Reactive Energy/Apparent Energy Display 76
5.1.9. How to Change the Display Digit of Active/Reactive/Apparent Energy 76
5.1.10. How to Reset Active/Reactive/Apparent Energy to Zero 77
5.1.11. How to Measure Reactive Energy (2 quadrant/4 quadrant measurement) 77
5.1.12. Each Measuring Item Display during Power Transmission 78
5.1.13. Demand Time Period and Demand Value of Current demand 78
5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.) 79
5.2.1. Upper/Lower Limit Alarm Display and Action 79
5.2.2. How to Cancel the Upper/Lower Limit Alarm 81
5.2.3. How to Stop Backlight Blinking Caused by the Upper/Lower Limit Alarm Generation 81
5.2.4. Upper/Lower Limit Alarm Item on the Alarm Contact 81
5.2.5. Periodic Active Energy Display 82
5.2.6. How to Reset Periodic Active Energy to Zero 82
5.2.7. Rolling Demand Display and Calculation 83
5.2.8. Rolling Demand Predict Value 84
5.2.9. Rolling Demand Time Period Adjustment 84
5.2.10. How to Clear the Rolling Demand Peak Value 84
5.2.11. Operating Time Display 85
5.2.12. How to Reset Operating Time to Zero 85
5.2.13. CO_{2} Equivalent Display 85
5.2.14. How to Clear the CO_{2} Equivalent 85
5.2.15. Digital Input/Output Status Display and Action 86
5.2.16. How to Cancel the Latch for Digital Input 86
5.2.17. How to Prevent Maximum Value Update by Motor Starting Current 86
5.2.18. Password Protection Setting 87
5.2.19. Built-in Logging Function 88
6. Others 89
6.1. Display Pattern List 89
6.2. Standard Value 92
6.3. Measuring Items and the Corresponding Display/Output 96
6.4. Instrument Operation 98
6.5. Troubleshooting 99
7. Installation 102
7.1. Dimensions 102
7.2. How to Install 104
7.2.1. Mounting Hole Dimensions 104
7.2.2. Mounting Position 104
7.2.3. Mounting and Fixing 104
7.2.4. Optional Plug-in Module Installation 104
7.3. How to Connect Wiring 105
7.3.1. Specifications on the Applicable Electrical Wire 105
7.3.2. Wiring of this Instrument 105
7.3.3. Wiring of the Optional Plug-in Module 105
7.3.4. Check the Connection 105
7.4. Wiring Diagram 107
7.5. How to insert/remove SD memory card 115
8. Specifications 116
8.1. Product Specifications 116
8.2. Compatible Standards 119
8.3. MODBUS RTU Communication Specifications 119
8.4. CC-Link Communication Specifications for optional plug-in module 120
8.5. MODBUS TCP Communication Specifications for optional plug-in module 120
8.6. Logging Specifications for optional plug-in module 121
8.7. Setting Table (Factory Default Settings and Customer's Notes Settings) 122
9. Appendix 125
9.1. ME96SS Calculation Method (3-Phase Unbalanced System with Neutral) 125
9.2. Optional parts 126
9.3. A List of Examples for Incorrect Wiring Display 127
9.3.1. 3-phase 4-wire System 127
9.3.2. 3-phase 3-wire System 136
9.3.3. 1-phase 3-wire System 143

Before use, read these instructions carefully to properly operate the instrument.
Be sure to follow the precautions described here for personnel and product safety.
Keep this manual ready to hand and accessible for future use at all times.
Be sure to forward the manual to the end user.
If you consider using the instrument for a special purpose such as nuclear power plants, aerospace, medical care, or passenger vehicles, consult with our sales representative.

The instructional icon in the manual is described as follows.

	The caution icon (\triangle) on the main unit indicates that incorrect handling may cause hazardous conditions. Always follow the subsequent instructions (\triangle canton) because they are important to personal safety. Failure to follow them may result in an electric shock, a fire, erroneous operation, or damage to the instrument. If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.

\triangle CAUION

The terminals of auxiliary power (MA, MB) and voltage input (P1, P2, P3, PN) have hazards of electric shock, explosion, or arc flash. Turn off the power supply of auxiliary power and input circuit and then handle the instrument.

Precautions on use environment and conditions
Do not use the instrument in the following places:
Failure to follow the instruction may cause a malfunction or reduced product life time.

- The ambient temperature exceeds the range $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
- The average daily temperature exceeds $+35^{\circ} \mathrm{C}$.
- The relative humidity exceeds the range 0 to 85% RH, or condensing.
- The altitude exceeds 2000 m.
- Pollution Degree: more than 2 *Note 1
- Exposed to much dust, corrosive gas, salty environment, or oil mist
- Transient over voltage: 4000 V *Note 1
- Exposed to excessive vibration or impact
- Exposed to rain or water drops
- Exposed to direct sunlight
- Pieces of metal or inductive substances are scattered.
- Exposed to strong magnetic fields or large exogenous noise

Note1: For details about the Pollution Degree and the Transient over voltage category, refer to EN61010-1:2010.
Grit, dust, and small insects cause poor contact or a failure such as insulation decline that caused by deposition and moisture absorption. Furthermore, in the area where the air contains conductive dust, a failure such as a product malfunction or insulation deterioration occurs in a relatively short time. In this case, you must take measures against it such as putting the instrument in an enclosed board. In addition, if the temperature inside the board rises, the measures must be undertaken as well.

Precautions on Installation and wiring
Be sure to read the instructions carefully before installation and wiring.

	- A qualified electrician must install and wire the instrument for safety. - Supply power to the instrument after completing its assembly work on a cabinet door. - The instrument is to be mounted on the cabinet door. All connections must be kept inside the cabinet. - The following table shows the specifications on the input/output terminal. - Auxiliary power supply and measuring elements				
	Auxiliary power supply		100 V AC to 240 V AC ($\pm 15 \%) 50 \mathrm{~Hz}$ to 60 Hz 100 V DC to 240 V DC $(-30 \%+15 \%)$		MA, MB terminals
	Measuring element	Voltage	3-phase 4-wire: max 277 3-phase 3-wire: (DELTA) (STAR) 1-phase 3-wire: max 220 1-phase 2-wire: (DELTA) (STAR)	Category III	P1, P2, P3, PN terminals
		Current	5 A (CT secondary side), max 30 V AC	Category III	$\begin{aligned} & +\mathrm{C} 1, \mathrm{C} 1,+\mathrm{C} 2, \\ & \mathrm{C} 2,+\mathrm{C} 3, \mathrm{C} 3 \\ & \text { terminals } \end{aligned}$
		Frequency	50 Hz or 60 Hz		

The current input terminals must be connected to a CT, external equipment, with basic insulation.
Be sure to continuously connect the terminals for voltage-measuring purpose and currentmeasuring purpose during operation.

Others

MODBUS RTU communication	T/R+, T/R-, SG terminals	
MODBUS TCP communication	Ethernet terminal	
CC-Link communication	DA, DB, DG terminals	
Digital input	DI1, DI2, DI3, DI4, DI COM, DI+, DI-, DI1+, DI1-, DI2+, DI2-, DI3+, DI3-k, DI4+, DI4-, DI5+, DI5- terminals	
Digital output 35 V DC		
Analog output	DO1+, DO1-, DO2+, DO2- terminals	
Pulse/Alarm output	CH1+, CH1-, CH2+, CH2-, CH3+, CH3-, CH4+, CH4- terminals	

- Keep the protection sheet affixed to the front of the instrument during installation and wiring.
- Do not drop the instrument from high place. If it is dropped and the display cracks, do not touch the liquid leaking from the broken LCD or do not get it in your mouth. If you touched the liquid, rinse it off with soapy water at once.
- Do not work under live-line condition. Otherwise, an instrument failure, an electric shock, or a fire may be caused.
- When tapping or wiring, take care not to enter any foreign objects such as chips or wire pieces into the instrument.
- If you pulled the wires with a strong force when connecting them to the terminals, the terminals might come off. (Tensile load: 39.2 N or less)
- Check the wiring diagram carefully. Inappropriate wiring can cause a failure of the instrument, an electric shock, or a fire.
- Use appropriate size wires. The use of an inappropriate size wire can cause a fire due to heat generation.
- Use crimp-type terminals compatible with the wire size. For details, refer to 7.3.1 Specifications on the Applicable Electrical Wire. The use of an inappropriate terminal can cause a malfunction, failure, or burnout of the instrument or a fire due to damage to the terminal or poor contact.
- Tighten the terminal screws with a specified torque and use a suitable pressure connector. For details, refer to 7.3.1Specifications on the Applicable Electrical Wire. Excessive tightening can cause damage to the terminals and screws.
- Be sure to confirm the wiring connections strictly after the connection. Poor connection can cause a malfunction of the instrument, an electric shock, or a fire.
Continued to the next page.

| | \bullet
 - In order to prevent invasion of noise, MODBUS RTU communication cables, auxiliary
 power supply cables, and other signal cables must not be placed close to or bound
 together with power lines or high voltage lines. When lying parallel to the power lines or
 high voltage lines, refer to the following table for the separation distance. (Except the
 input part of the terminal block) |
| :--- | :--- | :--- |
| \qquadPower lines of 600 V or less Distance
 Other power lines 300 mm or more | |

Precautions on preparation before use

- Observe the use conditions and environment requirements for installation place.
- You must set up the instrument before use. Read the manual carefully to set it up correctly. If the setup is incorrectly done, the instrument will not be properly operated.
- Check the power rating of the instrument and then apply proper voltage.

Precautions on how to use

- When operating the instrument, check that active bare wires do not exist around it. If any bare wire existed, stop the operation immediately and then take appropriate action such as insulation protection.
- If a power outage occurred during the setup, the instrument would not be set up correctly. Set it up again after power recovery.

| • Do not disassemble or modify the instrument to use. Otherwise, a failure, an electric |
| :--- | :--- | :--- |
| shock, or a fire can be caused. |
| - Use the instrument within the rating specified in the manual. If you used it outside the |
| rating, it might cause not only a malfunction or failure of the instrument but also ignition |
| or burnout. |
| - Do not open the CT secondary side while the primary current is energized. When the CT |
| secondary side circuit is open, the primary current flows. However, the secondary |
| current does not flow. Therefore, a high voltage is generated at the CT secondary side |
| and the temperature rises, resulting in insulation breakdown in the CT secondary |
| winding. It may lead to burnout. |
| - When external equipment is connected to the external terminals, the instrument and |
| external equipment must not be powered and be used after the definitive assembly on |
| a cabinet door. |
| - The rating of the terminal of external equipment should satisfy that of the external |
| terminal of the instrument. |

Precautions on maintenance

- Wipe dirt off the surface with a soft dry cloth.
- Do not leave a chemical cloth in contact with the instrument for a long time or do not wipe it with benzene, thinner, or alcohol.
- In order to properly use the instrument for a long time, conduct the following inspections:
(1) Daily maintenance
(1)No damage in the instrument
(2) No abnormality with LCD indicator
(3) No abnormal noise, smell or heat generation
(2) Periodical maintenance

Inspect the following item every six months to once a year.
(1)No looseness of installation and terminal block connection

Precautions on storage

To store the instrument, turn off the power supplies of auxiliary power and input circuit, remove the wires from the terminals, and then put them in a plastic bag.
For long-time storage, avoid the following places. Otherwise, there is danger of an instrument failure or reduced product life time.

- The ambient temperature exceeds the range $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
- The average daily temperature exceeds $+35^{\circ} \mathrm{C}$.
- The relative humidity exceeds the range 0 to $85 \% \mathrm{RH}$, or condensing.
- Exposed to much dust, corrosive gas, salty environment, or oil mist.
- Exposed to excessive vibration or impact.
- Exposed to rain or water drops.
- Exposed to direct sunlight.
- Pieces of metal or inductive substances are scattered.

Warranty

- The warranty period is for one year from the date of your purchase or 18 months after the manufacturing date, whichever is earlier.
- During the warranty period, if any failure occurred in standard use that the product is used in the condition, method, and environment followed by the conditions and precautions described in the catalog and user's manual, we would repair the product without charge.
- Even within the warranty period, non-free repair is applied to the following cases.
(1) Failures caused by the customer's improper storage, handling, carelessness, or fault.
(2) Failures caused by faulty workmanship
(3) Failures due to faults in use or undue modification
(4) Failures due to force majeure such as a fire or abnormal voltage or due to natural disasters such as earthquakes, windstorms, or floods
(5) Failures caused by the problem in question that could not be predicted with the technology available at the time the product was shipped.
- Our company shall not be liable to compensate for any loss arising from events not attributable to our company, customers' opportunity loss or lost earnings due to failure of the product, any loss, secondary loss, or accident caused by a special reason regardless of our company's predictability, damage to other products besides our products, or other operations

Replacement cycle of the product
It is recommend that you renew the product every ten years although it depends on your use condition.
The long-term use of the product may cause discoloration of the LCD or a product malfunction.

Disposal

- Treat the product properly as industrial waste.
- ME-0000BU-SS96 or ME-0000BU25-SS96 (optional plug-in module) is equipped with a lithium battery. The lithium battery is disposed of according to the local regulation.
- In EU member states, there is a separate collection system for waste batteries. Dispose of batteries properly at the local community waste collection/recycling center.
For ME-0000BU-SS96 or ME-0000BU25-SS96, the following symbol mark is printed on the packaging.

Note: This symbol is for EU member states only.
The symbol is specified in Article 20 'Information for end-users' of the new EU Battery Directive (2006/66/EC) and the Annex II.
The above symbol indicates that batteries need to be disposed of separately from other wastes.

© CAUTON

 lithium battery. Therefore, if it is thrown in fire, heat generation, burst, or ignition may occur. The lithium battery is disposed of according to the local regulation.Packaging materials and user's manual
For reduction of environment load, cardboard is used for packaging materials and the manual is printed with recycled papers.

This section summarizes the precautions to have the cabinet constructed with the instrument conform to the EMC Directive.
However, the method of conformance to the EMC Directive and the judgment on whether or not the cabinet conforms to the EMC Directive must be determined finally by the manufacturer.

This instrument complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This instrument may not cause harmful interference, and (2) this instrument must accept any interference received, including interference that may cause undesired operation.

1. EMC Standards

- EN 61326-1
- EN 61000-3-2
- EN 61000-3-3

2. Installation (EMC directive)

The instrument is to be mounted on the panel of a cabinet.
Therefore, the installation to the cabinet is important not only for safety but also for conformance to EMC.
The instrument is examined in the following conditions.

- A conductive cabinet must be used.
- The conductivity of the six surfaces of the cabinet must be all ensured.
- The cabinet must be grounded by thick wires for low impedance.
- The hole drilling dimensions on the cabinet must be 10 cm or less in diameter.
- The terminals for protective earth and functional earth must be grounded by thick wires for low impedance. The use of the terminal for protective earth is important not only for safety but also for conformance to EMC.
- The connecting part of the terminal must be all placed inside the cabinet.
- Wiring outside the cabinet must be conducted with shielded cables, and the cables must be fixed to the panel with clamps. (Strip the covering of shielded cable by a portion of clamp installation and then mask the grounding part of the panel and clamp so as not to be painted.)

Precautions for KC mark

사용자안내문

기 종 별	사 용 자 안 내 문
A급 기기(업무용 방송통신기자재)	이 기기는 업무용(A급) 전자파적합기기로서 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정외의 지역에서 사용하는 것을 목적으로 합니다.

Precautionary note written in Korean
(Distributors and users must understand that this product meets the electromagnetic compatibility requirements and is designed for industrial use (Class A).
Do not use the product in a residential area.
Applicant for KC mark : MITSUBISHI ELECTRIC AUTOMATION KOREA CO.,LTD
■ Manufacturer : MITSUBISHI ELECTRIC CORPORATION
Note 1: This is the notification for the KC mark (Korea Certification)

Table for measuring element code

The following table shows a list of measuring element codes used in the manual.

Measuring element code	Measuring element name
A1	Current, 1-phase
A2	Current, 2-phase
A3	Current, 3-phase
AN	Current, N-phase
AAvG	Current, average
DA1	Current demand, 1-phase
DA2	Current demand, 2-phase
DA3	Current demand, 3-phase
DAN	Current demand, N-phase
DAAvG	Current demand, average
V12	Voltage, between 1-2 lines
V23	Voltage, between 2-3 lines
V31	Voltage, between 3-1 lines
VAVG (L-L)	Voltage, average, line to line
V1N	Votage, 1N-phase
V2N	Voltage, 2N-phase
V3N	Voltage, 3N-phase
VAvG (L-N)	Voltage, average, line to neutral
W1	Active power, 1-phase
W2	Active power, 2-phase
W3	Active power, 3-phase
EW	Active power, total
var1	Reactive power, 1-phase
var2	Reactive power, 2-phase
var3	Reactive power, 3-phase
Evar	Reactive power, total
VA1	Apparent power, 1-phase
VA2	Apparent power, 2-phase
VA3	Apparent power, 3-phase
EVA	Apparent power, total
PF1	Power factor, 1-phase
PF2	Power factor, 2-phase
PF3	Power factor, 3-phase
EPF	Power factor, total
Hz	Frequency
Wh	Active energy
varh	Reactive energy
VAh	Apparent energy
DW	Rolling demand active power
Dvar	Rolling demand reactive power
DVA	Rolling demand apparent power
HI	Harmonic current
HIN	Harmonic current, N-phase
HV	Harmonic voltage
THDi	Harmonic current total distortion ratio
THDv	Harmonic voltage total distortion ratio
Aunb	Current unbalance rate
Vunb	Dotgage unbalance rate
DI	Digital output
DO	

1. Name and Function of Each Section

1.1. Name of Each Part

<The instrument>

The front of the unit

-The back of the unit

<The optional plug-in module>

■The back view (Model type: ME-4210-SS96B, ME-0040C-SS96, ME-0052-SS96)

The side/back view ((Model type: ME-0000MT-SS96)

The side/back view (Model type: ME-0000BU-SS96)

1. Name and Function of Each Section

1.1. Name of Each Part

The side/back view (Model type: ME-0000BU25-SS96)

1.2. LCD Function

Note: The above display is an example for explanation.

No.	Name of each part	Function			
1	LEAD status	Light up on the reactive energy (imported lead)/ (exported lead) screen.			
2	LAG status	Light up on the reactive energy (imported lag)/ (exported lag) screen.			
3	Built-in logging status	Light up when the built-in logging function is operating			
4	Digital element display	Display measuring elements expressed in digital numbers			
5	Digital display	Display measured values in digital numbers			
6	Unit	Display the units of measured values			
7	Setup status	Light up in the setting mode Blink in the setting confirmation mode			
8	Test mode status	Light up in the test mode			
9	Clock status	Light up when the present time is set.			
10	Upper/lower limit alarm status	Blink when the upper/lower limit alarm is generating			
11	Communication/ Option logging status display	Specification	ON	Blink	OFF
		CC-Link communication	Normal	CC-Link version mismatches Hardware abnormality	Hardware abnormality
		MODBUS RTU communication MODBUS TCP communication	Normal	Communication error such as wrong address*1	Hardware abnormality
		Option logging function	Normal	Error occurrence such as setting abnormality, SD memory card error, or battery voltage drop *1	Hardware abnormality
		*1. For details, refer to 6.5 Troubleshooting.			
12	Harmonics	Light up when harmonic is displayed			
13	Metering status	Blink when Imported active energy is measured *Note 1 *It appears on the imported active energy display screen only			

Note 1: The blinking cycle is constant regardless of measuring input size.

1. Name and Function of Each Section

1.3. Function of Operation Buttons

The function of each operation button varies depending on how to press the button.

<Meaning of marks>
O: Press, \square : Press for 1 second or more, ©: Press for 2 seconds or more, ——:Press simultaneously

Mode		Button name							Function	
		SET	-	+	RESET	MAX/MIN	PHASE	DISPLAY		
								\bigcirc	Switch the measurement screen.	
			O					\bigcirc	Switch the measurement screen in the reverse direction.	
							\bigcirc		Switch phase display.	
									Switch between the harmonic RMS value and distortion ratio. (Available on the harmonics display screen)	
						0			Enter/Exit the Max/Min value screen.	
			O	O					Switch the harmonic degree on the harmonics display screen.	
								©	Enter the cyclic display mode of measurement screen. Refer to 5.1.3.	
							©			
									Switch between the harmonic RMS value and distortion ratio screen in cyclic mode. (Available on the harmonics display)	
									Change the units of Wh, varh, and VAh or display the lowerdigit enlarged view. Refer to 5.1.9.	
					©				Clear the Max/Min values displayed on the screen.	They are available on the Max/Min value screen.
									Clear Max/Min values for every item in every screen.	
		\bigcirc			-		- ©		Reset Wh, varh, and VAh to zero. All measured values are reset to zero simultaneously	
									Reset periodic active energy to zero. (The periodic active energy displayed on the screen only)	
									Set the rolling demand time period on the rolling demand screen.	
									Clear the rolling demand peak value on the rolling demand screen.	
					\bigcirc				Reset operating time to zero. (The operating time displayed on the screen only)	
									Reset CO_{2} equivalent to zero on the CO_{2} equivalent display.	
					\bigcirc				Reset the alarm. (For the item displayed on the screen)	They are available only when set to manual alarm cancellation.
					\bigcirc				Reset all alarms at once. (For every item in every screen)	
					\bigcirc				Stop the backlight blinking caused by alarm. (Available only when set to backlight blinking)	
					©				Release the latch for digital input at once on the digital input screen.	
		\bigcirc			©				Enter the setting mode.	
		©							Enter the setting confirmation mode.	
					\bigcirc		-		Enter the password protection screen.	
		0							Determine the settings and then shift to the next settings.	
								\bigcirc	Return to the previous setting item.	
			0	O					Round up/down the setting value. (Pressing for 1 second or more enables fast forward.)	
		\square							Skip the settings and return to the setting menu screen.	
		\bigcirc							Reflect the setting change. (Available on the END screen)	
		\bigcirc							Cancel the setting change. (Available on the CANCEL screen)	
									Restart the instrument. (Available on the CANCEL screen)	
					\bigcirc		-0		Initialize to the factory default settings. (Available on the CANCEL screen) Refer to 3.16.	

1. Name and Function of Each Section

1.3. Function of Operation Buttons

Note: During backlight off mode, pressing any operation button first turns on the backlight. In addition, pressing any button again enables the use of the functions in the above table.

©CAUTON	- When you execute a function such as 'Reset Max/Min value' or 'Reset Wh, varh, and VAh to zero', past data is deleted. If you need to keep the data, record the data before the reset operation. When you execute 'Restart the instrument', the entire measurement function (measurement display, communication) will stop for a few seconds.

1. Name and Function of Each Section

1.4. LED Display of Optional Plug-in Module

LED (ME-0000MT-SS96)

No.	Name	Function
1	ERR. LED	Indicate the communication status of ME-0000MT-SS96.
	OFF	Normal
	ON	The following MODBUS TCP communication errors occur: - There is an abnormality in the MODBUS TCP application protocol head part. - LED becomes off when normal messages are received such as function code for serial.
2	10/100 LED	Indicate transmission speed
	ON	100 Mbps or unconnected
	OFF	10 Mbps
3	LINK/ACT LED	Indicate the link status
	ON	The link is established.
	Blink	Blink when sending or receiving.
	OFF	The link is not established.

LED (ME-0000BU-SS96)

No.	Name	Function
1	LOG. LED	Indicate the logging operation status
	ON	Logging is operating.
	OFF	Logging operation stops
	Low-speed blinking (0.5 sec : on/ 0.5 sec : off)	The setting change of logging conditions has been completed. Blink for 5 seconds.
	High-speed blinking (0.25 sec: on/ 0.25 sec : off)	When the logging element pattern is LP00, the setting file in the SD memory card is abnormal. Continue blinking until it turns to normal.
2	SD C. LED	Indicate the communication status of SD memory card.
	ON	Communicating
	OFF	Communication stops
	High-speed blinking (0.25 sec: on/ 0.25 sec: :off)	It is a SD memory card error Check that the SD memory card is not in 'write protect' status and that there is available capacity.
3)	BAT. LED	Indicate the battery voltage status.
	OFF	Normal battery voltage
	ON	Battery voltage drop

1. Name and Function of Each Section

1.4. LED Display of Optional Plug-in Module

■LED (ME-0000BU25-SS96)

No.	Name	Function
1	LOG. LED	Indicate the logging operation status
	ON	Logging is operating.
	OFF	Logging operation stops
	Low-speed blinking (0.5 sec : on/ 0.5 sec : off)	The setting change of logging conditions has been completed. Blink for 5 seconds.
	High-speed blinking (0.25 sec: on/ 0.25 sec : off)	When the logging element pattern is LP00, the setting file in the SD memory card is abnormal. Continue blinking until it turns to normal.
2	SD C. LED	Indicate the communication status of SD memory card.
	ON	Communicating
	OFF	Communication stops
	High-speed blinking (0.25 sec: on/ 0.25 sec : off)	It is a SD memory card error Check that the SD memory card is not in 'write protect' status and that there is available capacity.
3)	BAT. LED	Indicate the battery voltage status.
	OFF	Normal battery voltage
	ON	Battery voltage drop

2. Each Mode Function

The instrument has the following operation modes.
When auxiliary power is supplied, the operating mode is first displayed.
Depending on the application, switch the operation mode to use.

Mode	Description	Reference
Operating mode	This is a normal operation mode to display each measured value in digital numerical number. In the operating mode, there are 'Present value display' that shows values at present and 'Max/Min value display' that shows the maximum and minimum values in the past. In addition, on each display screen, the cyclic display mode, which automatically switches the display screen every 5 seconds, is available.	5 Operation
Setting mode	This is a mode where you can change the settings for measurement and output functions. In addition, on the CANCEL screen, which is the screen to cancel the setting change, the following special operations are available. - Restart the instrument. - Reset the settings to the factory default.	3 How to Set up
Setting confirmation mode (Test mode)	This is a mode where you can confirm the setting of each item. In this mode, you cannot change the setting. Therefore, it is possible to prevent from accidentally changing the setting. The mode also provides test function available at startup of systems. - Communication Test: Without measurement (voltage/current) input, fixed numerical data is returned. - Analog output adjustment: Analog output adjustment is executed such as zero adjustment or span adjustment. - Output test: Without measurement (voltage/current) input, alarm/digital output, analog output, or pulse output is executed. - Support function for checking input wiring: - When either a voltage input or current input is incorrectly wired, the incorrect wiring part is displayed on the screen. In addition, useful information is also displayed such as a current phase angle and voltage phase angle.	3.15 or 4 How to Use Test Mode

Flow of each mode

3. How to Set up

3.1. Setting Flow

For measurement, you must set settings such as phase wire system, VT/Direct voltage, and CT primary current in the setting mode.
From the operating mode, enter the setting mode and then set necessary items. Any items not set remain in the factory default.
For normal use, you can use the instrument by completing the settings in the setting menu 1 only. For details on the settings, refer to 3.2Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current).
For details on the factory default settings, refer to 8.7.

ACAUTICN	When you change a setting, the related setting items and measured data will be initialized. Therefore, check that beforehand. For details on the initialization, refer to 3.16 Initialization of Related Items by Changing a Setting.

3. How to Set up

3.1. Setting Flow

<Setting Procedure>

(1) Press the SET and RESET buttons simultaneously for 2 seconds to enter the setting mode.
(2) Select the setting menu number with the \oplus or \bigodot button.
(3) Press the SET button to determine the setting menu number.
(4) Set each setting item. (Refer to 3.2 to 3.14 .)
(5) After completing all the settings, select End in the setting menu and then press the SET button.
(6) When the End screen appears, press the SET button again.

Setting menu or Setting Confirmation Mode

Basic operation for settings

The following table shows a list of basic operations for settings.

Function	Operation	Note
Select a setting	Press \oplus or Θ button	Fast-forward by pressing for 1 second or more
Determine a setting	Press SET button	When the setting is determined, the screen switches to the next setting item.
Return to the previous setting item	Press © OISPLAY button	The setting before return is enabled.
Return to the setting menu during setup	Press SET button for 1 second	

3. How to Set up

3.2. Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

You will set the phase wire system, display pattern, VT/Direct voltage, CT primary current, and demand time period.
In the operating mode, press sex and reset simultaneously for 2 seconds or more to enter the following operation.

3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

(3)VT/Direct voltage

Continued from the previous page

2) When set to other than 3-phase 4-wire system
*For 1-phase 2-wire system, P02 is not selectable.

	$\\| \underset{\sim}{\sim}$												Additional Screen *Note										
P01	O	\bigcirc	O	O	O	O	O	\bigcirc	0	\bigcirc	\bigcirc	O	\bigcirc	O	0	\bigcirc	\triangle	\triangle	\triangle	\triangle	\triangle	Δ	\triangle
P02	\bigcirc	O	\bigcirc	\bigcirc	O	O	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	O	\bigcirc	\bigcirc	O	\bigcirc	Δ	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
P00	\square	\triangle	Δ	\triangle	\triangle	\triangle	Δ	\triangle	\triangle	\triangle	\triangle	\triangle											

Note: The following settings are necessary to display elements of the additional screens.

Measuring element of the additional screen	Setting item	Reference
Active energy (Exported), Reactive energy (Special)	Setting menu 3 Active/Reactive energy measurement	$\mathbf{3 . 6}$
Harmonic current, Harmonic voltage	Setting menu 3 Harmonics display	3.6
Unbalance rate	Setting menu 3 Unbalance rate display	3.6
Periodic active energy	Setting menu 7 Periodic active energy display	$\mathbf{3 . 1 2}$
Rolling demand	Setting menu 7 Rolling demand display	$\mathbf{3 . 1 2}$
Digital input/output status	Setting menu 7 Digital input/output display	$\mathbf{3 . 1 2}$
Operating time	Setting menu 8 Operating time display	$\mathbf{3 . 1 3}$
CO2 equivalent	Setting menu 8 CO2 equivalent display	$\mathbf{3 . 1 3}$

*To display the additional screens of active/reactive/apparent energy of P00, you must set each item as display element.

Set the settings for VT.

1. When set to 3-phase 4-wire system

$$
\text { no } \longleftrightarrow \mathrm{yES}
$$

2. When set to 3-phase 3-wire/1-phase 2-wire system

Note. VT is Voltage Transformer.
When you set 1-phase 3-wire at 1 phase wire system, direct measurement input only is available. This setting will be skipped.
(1) For direct measurement input (without VT)
(a) When set to 3-phase 4-wire system
(Phase voltage/Line voltage)

(b) When set to 3-phase 3-wire system (2CT, 3CT) /1-phase 2-wire system (Line voltage)

(c) When set to 1 -phase 3 -wire system ($1 \mathrm{~N} 2,1 \mathrm{~N} 3$) (Phase voltage/Line voltage)

3. How to Set up
3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

3. How to Set up

3.2 Setting Menu 1: Basic Setup (Settings for Phase Wire System, Display Pattern, VT/Direct Voltage, and CT Primary Current)

Set the current demand time period.
For details on the current demand time period, refer to 5.1.13

$\stackrel{ }{ }$	7	\downarrow	7	7
0 s	40 s	3 min	7 min	15 m
10 s	50 s	4 min	8 min	20
20 s	1 min	5 min	9 min	25
30 s	2 min	6 min	10 min	30

Current demand time period

Note: Even when you set a display pattern that does not display current demand, this screen appears. If current demand is not necessary, just press (SET).

According to 3.1 Setting Flow,
complete the settings or shift to other setting menu.

If you set the settings only in the setting menu 1 to use, move to 5 Operation.
If you use an additional function, set it in the setting menu 2 to 8 .

Note	If you change a setting in the setting menu 1, the maximum and minimum values of the related measuring elements will be reset. However, active/reactive/apparent energy value will not be reset. For details, refer to $\mathbf{3 . 1 6}$ Initialization of Related Items by Changing a Setting.

3. How to Set up

3.3. Setting Menu 2: Communication Settings (MODBUS RTU Communication Settings)

<The installation conditions for optional plug-in module>
No installation
In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.

Select 2 in the setting menu number.
*Refer to the right figure.

Select option (CC-Link or MODBUS TCP communication) or MODBUS RTU communication.

$$
\frac{\mathrm{CC}}{\text { (Option) }} \underline{\mathrm{tcP}}
$$

 $\xrightarrow[\text { (MODBUS RTU communication) }]{\text { rtu }}$

The explanation here is about the MODBUS RTU communication settings.

For the CC-Link communication settings, refer to 3.4.
For the MODBUS TCP communication settings, refer to $\mathbf{3 . 5}$.
Note: When ME-0040C-SS96 or ME-0000MT-SS96 of optional plug-in module is not installed, this setting is skipped.

Set the address of MODBUS RTU communication.
Settable address: 1 to 255

(3)MODBUS RTU Parity

[^0]
3. How to Set up

3.4. Setting Menu 2: Communication Settings (CC-Link Communication Settings)

<The installation conditions for optional plug-in module> ME-0040C-SS96 installation

In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.

Set the version of CC-Link communication.

If you have changed a setting related to CC-Link communication, set to 'on.'
*If you do not set to 'on', the changed setting will not be enabled.
oFF

According to 3.1 Setting Flow, complete the settings or shift to other setting menu.

In addition, if you need to set the settings for MODBUS RTU communication, select the setting menu 2 again and select 'Mb. rtu' at 1 Communication setting selection.

3. How to Set up

3.5. Setting Menu 2: Communication Settings (MODBUS TCP Communication Settings)

<The installation conditions for optional plug-in module> ME-0000MT-SS96 installation

In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.

Set the subnet mask of MOCBUS TCP communication.

Select a subnet mask setting from the following 30 types in the table.

\rightarrow
(1) 128.0.0.0
(9)

(2)	192.0 .0 .0	(10)	255.102 .0 .0	(17)	255.255 .128 .0

(3) 224.0 .0 .0 (11) $255.224 .0 .0 \mid(18) ~ 255.255 .192 .0)(26) ~ 255.255 .255 .192$

(4)	240.0 .0 .0	(12)	255.240 .0 .0	(20)	255.255 .240 .0	(28)	255.255 .255 .240

(5)	248.0 .0 .0	(13)	255.248 .0 .0	(21)	255.255 .248 .0	(29)
(255.255.255.248						

(6)	252.0 .0 .0	(14)	255.252 .0 .0	(22)	255.255 .252 .0	(30)	255.255 .255 .252

(7)	254.0 .0 .0	(15)	255.254 .0 .0	(23)	255.255 .254 .0

(8)	255.0 .0 .0	(16)	255.255 .0 .0	(24)	255.255 .255 .0

3. How to Set up

3.5. Setting Menu 2: Communication Settings (MODBUS TCP Communication Settings)

3. How to Set up

3.6. Setting Menu 3: Display Settings (Settings for Active/Reactive Energy and Harmonic Measurement)

This section describes how to set the special measurement of active/reactive energy and harmonic display. In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.

When 'Wh' or 'varh' is selected in the display pattern of P00, it is displayed.

Set the harmonic display.

When you set to 'on (Display)', harmonic measured values are displayed on the additional screen of display pattern.

3. How to Set up

3.6 Setting Menu 3: Display Settings (Settings for Active/Reactive Energy and Harmonic Measurement)

Note	Even when you select a display pattern that does not display active/reactive power or active/reactive energy, the setting items of © Active/Reactive energy measurement are displayed because the symbol can be displayed as appropriate for 2 quadrant/4 quadrant measurement of reactive power/power factor according to the settings of 6Active/Reactive energy measurement.

3. How to Set up

3.7. Setting Menu 4: LCD Settings (Settings for Model Display, Version Display, Backlight, and Display Update Time)

This section describes how to check the model and set the backlight and display update time functions. These settings are not necessary for normal use.
In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.
Select 4 in the setting menu number.
*Refer to the right figure.

You can check the model. This is for display only and not possible to change the settings. Refer to the following table for the corresponding model.
(1) Second line

Model	
$\mathbf{5 5 r b}$	ME96SSRB-MB

(2) Fourth line

Model name for optional plug-in module	
	Blank
43	ME-4210-SS96B
7iny	ME-0040C-SS96
กחIJ]	ME-0052-SS96
MIL	ME-0000MT-SS96 *1
חกחainiil	ME-0000BU-SS96 ME-0000BU25-SS96

*1 When "E90xx" appears, MODBUS TCP communication error is occurring.
You can check the product version.
*This is for display only and not possible to change the settings.

<When the backlight is set to 'Auto'> No button operation for 5 minutes \rightarrow OFF Button operation during off *Note \rightarrow ON for 5 minutes

Note: During OFF mode, when you operate any button, the backlight lights up and the display remains as it is. When you press any button again, the display switches.
It is possible to change the setting of display update time of
measured values. If the switch timing is too quickly for you
to read the display value, set to 1 second.
*The default setting is 0.5 second.
0.5 second $\longrightarrow 1$ second

According to 3.1 Setting Flow,

complete the settings or shift to other setting menu.

3. How to Set up

3.8. Setting Menu 5: Pulse/Alarm Settings (Settings for Upper/Lower Limit Alarm, Motor Starting Current Mask Function, and Pulse Output)

This section describes how to set the upper/lower limit alarm, backlight blinking during alarm, motor starting current, pulse output, and alarm output.
In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.
For(details about each function, refer to the following:

- Upper/lower limit alarm \rightarrow See 5.2.1 to 5.2.3.
- Motor starting current \rightarrow See 5.2.17.

Set a measuring element of upper/lower limit alarm item 1.
This setting enables upper/lower limit monitoring of a measured value.
(1) When set to 3 -phase 4 -wire system

(2) When set to other than 3-phase 4-wire system

var upper limit
var lower limit
Dear (Predict) upper limit
Dear (Present) upper limit
Dear (Last) upper limit
DVA (Predict) upper limit
DVA (Present) upper limit
DVA (Last) upper limit
PF upper limit
PF lower limit
Hz upper limit
Hz lower limit
HI total upper limit
THDv upper limit
Aunt upper limit *1
Vynb upper limit *1
Note1.The measuring elements not included in the display pattern you set can be selected.
*1. It is not displayed for 1-phase 2-wire system.
3. How to Set up

3.8 Setting Menu 5: Pulse/Alarm Settings (Settings for Upper/Lower Limit Alarm, Motor Starting Current Mask Function, and Pulse Output)

(3)Upper/Lower limit alarm item 2 to 4

Set a measuring element of each of upper/lower limit alarm item 2 to 4.
The item you have already selected is not available repeatedly.
The setting method is the same as 1 UUpper/Lower limit alarm item 1 .

Set the alarm value of each of upper/lower limit alarm item 2 to 4.
The setting method is the same as 2)Upper/Lower limit alarm value 1 .

3. How to Set up

3.8 Setting Menu 5: Pulse/Alarm Settings (Settings for Upper/Lower Limit Alarm, Motor Starting Current Mask Function, and Pulse Output)

For motor current monitoring, this setting enables to prevent unnecessary maximum value update and alarm generating caused by motor starting current.
-When this setting is not necessary \Rightarrow Select 'oFF' and then press SET to move to the next setting item.
\cdot When this setting is necessary \Rightarrow Select 'on' and then press SET to move to (1) below.

(1) Motor starting current threshold

Set the threshold to detect motor starting current.

Setting range	Setting step *Note
3 to $\underline{5}$ to $120(\%)$	1%

*Note: This is the percentage ratio to the CT primary current setting.
(2) Motor starting current delay time

During the delay time after motor starting current is detected, neither a maximum value update nor an alarm is generated

\square
1 s
3 s
5 s
10 s
4

3．How to Set up

3．8 Setting Menu 5：Pulse／Alarm Settings（Settings for Upper／Lower Limit Alarm，Motor Starting Current Mask Function，and Pulse Output）

（11）Pulse output 1 Pulse unit
 Pulse unit

Set the function of pulse／alarm output 1
When ME－4210－SS96B（optional plug－in module）is not installed，this screen is not displayed．
For alarm items at selecting alarm output，refer to
5．2．45．1．4．
Pulse output）
\longleftrightarrow AL （Alarm output）

Set the output item of pulse output 1.
When ME－4210－SS96B（optional plug－in module）is not installed or when 9Pulse／Alarm output function 1 is not set to pulse output，this screen is not displayed．

Setting item	Display		
	A	B	C
Active energy（Imported）		Wh	OFF
Active energy（Exported）	0．06	Wh	OFF
Reactive energy（Imported lag）	ing	varh	LAG） m
Reactive energy（Imported lead）	ing．	varh	H－
Reactive energy（Exported lag）	0.06	varh	LAG）m
Reactive energy（Exported lead）	002	varh	H－\LEAD
Apparent energy	暍88．	UFh	OFF
Periodic active energy 1	Mnig	Wh	OFF
Periodic active energy 2	Mn？	Wh	OFF
Periodic active energy 3	叫码吅	Wh	OFF
non（No output）	ロnn	OFF	OFF

Note：According to the selected item，the segment in the left table blinks．

Set the pulse unit of pulse output 1.
The pulse unit is selected from the following table according to full－load power．

When ME－4210－SS96B（optional plug－in module）is not installed or when 9Pulse／Alarm output function 1 is not set to pulse output，this screen is not displayed．

Full－load power $[\mathrm{kW}]=\frac{\alpha \times \text {（VT primary voltage）} \times \text {（CT primary voltage）}}{1000}$

$$
\left(\begin{array}{cc}
\text { a: } & \text { 1-phase 2-wire } \\
2 & \text { 1-phase 3-wire } \\
\sqrt{3} & \text { 3-phase 2-wire }
\end{array}\right.
$$

＊1：For 3－phase 4 －wire system，the VT primary voltage and direct voltage are calculated using phase voltage．
＊2：For 1 －phase 3 －wire system，the VT primary voltage is calculated using phase voltage．
＊3：For the direct voltage setting，direct voltage is used for the calculation instead of VT primary voltage．

Full－load power［kW］	Settable pulse unit				
Below 10	1	0.1	0.01	0.001	
10 or more and below 100	10	1	0.1	0.01	$\mathrm{kWh} /$ pulse
100 or more and below 1000	100	10	1	0.1	
1000 or more and below 10000	1	0.1	0.01	0.001	
10000 or more and below 100000	10	1	0.1	0.01	MWh／pulse
100000 or more	100	10	1	0.1	

Note1：When（11PPulse output 1 Output item is set to＇non＇，this setting is skipped．
Note2：The factory default setting is the minimum value of settable pulse unit．
Note3：For reactive power，read＇kW＇and＇kWh＇of the above table as＇kvar＇and＇kvarh＇ respectively．
Note4：For apparent power，read＇ kW ＇and＇ kWh ＇of the above table as＇ kVA ＇and＇ kVAh ＇ respectively．
3. How to Set up
3.8 Setting Menu 5: Pulse/Alarm Settings (Settings for Upper/Lower Limit Alarm, Motor Starting Current Mask Function, and Pulse Output)

According to 3.1 Setting Flow,
complete the settings or shift to other setting menu.
Set the pulse width of output pulse
according to the input pulse conditions of receiver side.
When ME-4210-SS96B (optional plug-in module) is not installed or when 9) Pulse/Alarm output function 1 or (12) Pulse/Alarm output function 2 is not set to pulse output, this screen is not displayed.

The setting method is the same as (11)Pulse output 1

The setting method is the same as 10 Pulse output 1

Set the output item of pulse output 2.
It is possible to set the same item as pulse output 1.
When ME-4210-SS96B (optional plug-in module) is not installed or when (12)Pulse/Alarm output function 2 is not set to pulse output, this screen is not displayed.

Output item.
The factory default setting: Reactive energy (Imported lag)

Set the pulse unit of pulse output 2.
When ME-4210-SS96B (optional plug-in module) is not installed or when (12)Pulse/Alarm output function 2 is not set to pulse output, this screen is not displayed.

Output unit.

The factory default setting: Settable minimum value of pulse unit
Note: When 13 Pulse output 2 Output item is set to "non", this setting is skipped.

When the pulse width is set to 0.500 s or 1.000 s , if the pulse unit is set to the minimum value, the pulse output cannot track under large load conditions and it can result in a decrease in the pulse output number.

3. How to Set up

3.9. Setting Menu 6: Built-in Logging Settings

You will set the built-in logging.
In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.

3.9 Setting Menu 6: Built-in Logging Settings

(1) Phase wire system: 3-phase 4-wire

Logging item pattern	LP01	LP02
Logging measuring data (Integrated value data) 1	Wh (Imported)	Wh (Imported)
Logging measuring data (Integrated value data) 2	Wh (Exported)	Wh (Exported)
Logging measuring data (Integrated value data) 3	varh (Imported lag)	varh (Imported lag)
Logging measuring data (Integrated value data) 4	varh (Imported lead)	varh (Imported lead)
Logging measuring data (Integrated value data) 5	VAh	VAh
Logging measuring data (Data other than integrated value) 1	EW	$\Sigma \mathrm{W}$
Logging measuring data (Data other than integrated value) 2	2PF	2PF
Logging measuring data (Data other than integrated value) 3	Hz	Hz
Logging measuring data (Data other than integrated value) 4	¿var	$\mathrm{A}_{\text {AVG }}$
Logging measuring data (Data other than integrated value) 5	इVA	$\mathrm{V}_{\text {AVG }}(\mathrm{L}-\mathrm{L})$
Logging measuring data (Data other than integrated value) 6	$\mathrm{A}_{\text {avg }}$	A1
Logging measuring data (Data other than integrated value) 7	$\mathrm{V}_{\text {AVG }}(\mathrm{L}-\mathrm{L})$	A2
$\begin{aligned} & \text { Logging measuring data } \\ & \text { (Data other than integrated value) } 8 \end{aligned}$	DW (Last)	A3
Logging measuring data (Data other than integrated value) 9	Dvar (Last)	AN
Logging measuring data (Data other than integrated value) 10	DVA (Last)	V12
Logging measuring data (Data other than integrated value) 11	DW (Peak)	V23
Logging measuring data (Data other than integrated value) 12	Dvar (Peak)	V31
Logging measuring data (Data other than integrated value) 13	DVA (Peak)	V1N
Logging measuring data (Data other than integrated value) 14	HI1 (total)	V2N
Logging measuring data (Data other than integrated value) 15	THD ${ }_{\text {v1N }}$	V3N

(2) Phase wire system: 3 -phase 3 -wire (2CT)/ 3 -phase 3 -wire (3CT)/ 1 -phase 3 -wire

Logging item pattern	LP01	LP02
Logging measuring data (Integrated value data) 1	Wh (Imported)	Wh (Imported)
Logging measuring data (Integrated value data) 2	Wh (Exported)	Wh (Exported)
Logging measuring data (Integrated value data) 3	varh (Imported lag)	varh (Imported lag)
Logging measuring data (Integrated value data) 4	varh (Imported lead)	varh (Imported lead)
Logging measuring data (Integrated value data) 5	VAh	VAh
Logging measuring data (Data other than integrated value) 1	EW	EW
Logging measuring data (Data other than integrated value) 2	इPF	इPF
Logging measuring data (Data other than integrated value) 3	Hz	Hz
Logging measuring data (Data other than integrated value) 4	£var	$\mathrm{A}_{\text {AVG }}$
Logging measuring data (Data other than integrated value) 5	¿VA	$\mathrm{V}_{\text {AVG }}(\mathrm{L}-\mathrm{L})$
Logging measuring data (Data other than integrated value) 6	$\mathrm{A}_{\text {AVG }}$	A1
Logging measuring data (Data other than integrated value) 7	$\mathrm{V}_{\text {AVG }}(\mathrm{L}-\mathrm{L})$	A2
Logging measuring data (Data other than integrated value) 8	DW (Last)	A3
Logging measuring data (Data other than integrated value) 9	Dvar (Last)	-
Logging measuring data (Data other than integrated value) 10	DVA (Last)	V12
Logging measuring data (Data other than integrated value) 11	DW (Peak)	V23
Logging measuring data (Data other than integrated value) 12	Dvar (Peak)	V31
Logging measuring data (Data other than integrated value) 13	DVA (Peak)	-
Logging measuring data (Data other than integrated value) 14	HI1 (total)	-
Logging measuring data (Data other than integrated value) 15	THD ${ }_{\text {v12 }}$	-

3. How to Set up
3.9 Setting Menu 6: Built-in Logging Settings

3．How to Set up

3．10．Setting Menu 6：Analog Output Settings

＜The installation conditions for optional plug－in module＞
ME－4210－SS96B installation
You will set the analog output．
In the operating mode，press SET and RESET simultaneously for 2 seconds or more to enter the following operation．

Set the output item of analog output CH1．
Select an output measuring item from the following table．
（1）When set to 3－phase 4－wire system

3－phase 4－wire system			$\begin{aligned} & \text { 䞇 } \\ & \text { 毘 } \\ & \hline \end{aligned}$	考能
non	V_{12}	PF_{1}		
A_{1}	V_{23}	PF_{2}		
A_{2}	V_{31}	PF_{3}		
A_{3}	$\mathrm{V}_{\text {AVG }}$（L－L）	$\underline{\text { PF } \sum \text {（ } \mathrm{CH} 4 \text { ）}}$		
A_{N}	W_{1}	Hz		
$A^{\text {AVG }}$（ CH 1$)$	W_{2}	HI_{1}		
DA_{1}	W3	HI_{2}		
$D A_{2}$	W^{Σ}（ CH 3$)$	HI_{3}		
DA_{3}	var_{1}	Hl_{N}		
DA_{N}	var2 2	THD ${ }_{\text {v1N }}$		
DAavg	var3	THD ${ }_{\text {v2N }}$		
$\mathrm{V}_{1 \mathrm{~N}}$	$\operatorname{var}_{\Sigma}$	THD ${ }_{\text {v3N }}$		
$\mathrm{V}_{2 N}$	$V A_{1}$			
$V_{3 N}$	$V A_{2}$			
$\underline{\text { VAVG }}$（L－N）（ CH 2$)$	$V A_{3}$			
	$V A_{\Sigma}$			

Note1：The same measuring item can be set for each CH ．
Note2：The measuring items not included in the display pattern you set can be selected．
Note3：Channels set to＇non＇have the minimum output（4mA）．In addition，it proceeds to the next CH setting．
Note4：The underlined measuring items represent the factory default settings assigned to each CH
Note5：VA is output with a scaling of 0 to 100%（the percentage of a standard value）． For details on how to calculate the standard value，refer to 6．2．
Note6： Hz is output with a scaling of 40 Hz to 50 Hz to 55 Hz for 50 Hz setting and 55 Hz to 60 Hz to 65 Hz for 60 Hz setting．
Note7：For HI，the harmonic current total RMS value is output with a scaling of 0 to 60%（the percentage of the primary current setting）．
For THDv，the harmonic voltage total distortion ratio is output with a scaling of 0 to 20\％．

Continued to the next page．

3. How to Set up

3.10 Setting Menu 6: Analog Output Settings

3.10 Setting Menu 6: Analog Output Settings

Set the details for analog output CH 1 .
*The following settings can be set separately from measuring items included in the display pattern.
This setting is necessary when (2)Analog output CH1 Output item is set to current, demand current, voltage, active power, reactive power, or power factor. If it is set to other element, the setting will be skipped.
(1) When the output item is set to current or demand current.
(a) Select the CT primary current value or a special primary current value to set the max output value of analog output.

Output item	Setting range	
A	CT primary current value DA	(Setting menu 1.4.1 Primary current setting value)
(Special primary current value)		

(b) When selecting 'SP' at (a), select a max output value from the following range.

Output item	Setting range *1
A	+3 STEP (Approximately 120\% of CT primary current setting value)
DA	(100\%: CT primary current setting value)
	-10 STEP (Approximately 40\% of CT primary current setting value)

*1: For details on how to calculate STEP and setting range, refer to 6.2.
(2) When the output item is set to voltage, select a max output value from the following range.

Output item	Setting range *1
V	+10 STEP (Approximately 250\% of standard value) (100\%: Standard value) -18 STEP (Approximately 20\% of standard value)

*1: For details on how to calculate the standard value and STEP,
 refer to 6.2 .
(3) When the output item is set to active power or reactive power.
(a) Select a max output value from the following range.

Output item	Setting range *1
W	+3 STEP (Approximately 120% of standard value)
var STEP (100\%: Standard value) -18 STEP (Approximately 20\% of standard value)	

*1: For details on how to calculate the standard value and STEP, refer to 6.2 .
(b) When the output item is set to active power, select single deflection or double deflection for analog output. (When the output item is reactive power, the double deflection only is available.)

Output item	Setting range		
<Relationship with	Single deflection	\longrightarrow Double deflection	$\underset{\substack{\text { misplar } \\ \square}}{\substack{\text { SET }}}$
<Relationship with input and output>			To the next CH setting

3.10 Setting Menu 6: Analog Output Settings

Continued from the previous page.
(4) When the output item is set to power factor, select an output range.

Output item	Setting range
PF	-0.5 to 1 to $0.5 \longleftrightarrow-0$ to 1 to 0
<Relationship with input and output>	

Set the details of each of analog output CH 2 to 4.
The setting method is the same as (3)Analog output CH1 detailed settings.

Set the limit of analog output in case of excess of full scale (Every CH is the same setting.)

Setting	Description
ofF (No limited)	For span value, the upper limit output is $+5 \%$ and the lower limit output is -5%.
on (Limited)	For span value, the upper limit output is $+1 \%$ and the lower limit output is -1%.

Note: When every analog output CH is set to "non", this setting is skipped.

According to 3.1 Setting Flow, complete the settings or shift to other setting menu.

3. How to Set up

3.11. Setting Menu 6: Optional Logging settings

<The installation conditions for optional plug-in module> ME-0000BU-SS96 or ME-0000BU25-SS96 installation

You will set the optional logging.
In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.

3.11 Setting Menu 6: Optional Logging settings

3. How to Set up

3.12. Setting Menu 7: Settings for Periodic active Energy, Rolling Demand, and Digital Input/Output

You will set the periodic active energy, rolling demand, and digital input/output.
In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.
(For details about each function, refer to the corresponding section.)
Periodic active energy \Rightarrow See 5.2.5 to 5.2.6.
Rolling demand \Rightarrow See 5.2.7 to 5.2.10.
Digital input/output \Rightarrow See to 5.2.155.2.15 to 5.2.165.2.16.
Select 7 in the setting menu number.
*Refer to the right figure.

Set whether to display periodic active energy, which is that active energy is divided into some time periods.

Set the control method to switch the periodic active energy time period.

When any optional plug-in module is not installed and when
ME-0000MT-SS96,ME-0000BU-SS96 or
ME-0000BU25-SS96 is installed, no item related to DI is
 displayed.
When two time periods are controlled with a contact, select 'd.in1' or 'd.in2.'
When three time periods are controlled with three contacts, select 'd.in1 to 3.'

Set whether to display rolling demand.
(No switching) (Communication (Digital input DI 1) (Digital input DI 2) (Digital input DI1 to 3) control)
Note1: When ME-4210-SS96B (optional plug-in module) is installed, 'd.in2' and 'd.in1 to 3' are not displayed. In addition, when 4Rolling demand time period adjustment is set to 'd.in1', no item related to DI is displayed.
Note2: When ME-0040C-SS96, ME-0052-SS96(optional plug-in module) is installed, DI set at 4Rolling demand time period adjustment is not displayed.

(4)Rolling demand time period adjustment

Set the time period of rolling demand.
When any optional plug-in module is not installed and when ME-0000MT-SS96, ME-0000BU-SS96 or
ME-0000BU25-SS96 is installed, this screen is not displayed.

Note1: When ME-4210-SS96B (optional plug-in module) is installed, 'd.in2', 'd.in3', and 'd.in4' are not displayed. In addition, when (2)Control method to switch periodic active energy time period is set to 'd.in1', this screen is not displayed.
Note2: When ME-0040C-SS96 or ME-0052-SS96 (optional module) is installed, DI set at (2)Control method to switch periodic active energy time period is not displayed.
3. How to Set up
3.12 Setting Menu 7: Settings for Periodic active Energy, Rolling Demand, and Digital Input/Output

3. How to Set up

3.13. Setting Menu 8: Special Settings (Settings for Operating Time, IEC Mode, and CO_{2} equivalent)

You will set the operating time and IEC mode.
In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.
$\left(\begin{array}{c}\text { For details about each function, refer to the corresponding section. } \\ \text { Operating time } \Rightarrow \text { See 5.2.11 to 5.2.12. }\end{array}\right]$
Select 8 in the setting menu.
*Refer to the right figure.

Set whether to display the operating time, which integrates input time of counting target and is displayed as load operating time.

Select a count target of operating time 1 from auxiliary power, current, or voltage.

(3)Operating time 1

 Threshold

Select a count target of operating time 2 from auxiliary power, current, or voltage.

The setting method is the same as (2)Operating time 1 Count target settings.
3. How to Set up
3.13. Setting Menu 8: Special Settings (Settings for Operating Time, IEC Mode, and CO_{2} equivalent)

Set the CO_{2} conversion rate.

(The factory default setting: $0.5 \mathrm{~kg}-\mathrm{CO}_{2} / \mathrm{kWh}$)

- From the upper digit, set the blinking digit with \oplus or Θ.

- By pressing set, move the setting item, blinking one, to a lower digit.
- By pressing oispar, move the setting item, blinking one, to an upper digit.
-The setting ranges from 0.000 to $0.999\left(\mathrm{~kg}-\mathrm{CO}_{2} / \mathrm{kWh}\right)$.
-By pressing sef at the lowest digit, return to the setting menu.

According to 3.1 Setting Flow,
complete the settings or shift to other setting menu.

3. How to Set up

3.14. Setting Menu CL: Preset Time Settings

You will set the time necessary when data logging is executed.
When the built-in logging function is set to 'oFF (Not use)', and when ME-0000BU-SS96 or ME-0000BU25SS96 (optional plug-in module) is not installed, this menu is not displayed.
In the operating mode, press SET and RESET simultaneously for 2 seconds or more to enter the following operation.

ACAUTION	If the present time were changed from the time displayed at the date before/after 31 days, all logging data in ME-0000BU-SS96 or ME-0000BU SS96 (optional plug-in module) would be deleted. If you change the present time, output the logging data to a SD memory card beforehand, confirm that the data is correctly stored on a PC, and change the settings.

Set the month for date.

Set the hour for time.
Setting range:

3. How to Set up

3.14. Setting Menu CL: Current Time Settings

Set the minute for time.

Setting range (Tens place): 0 to 5
Setting range (Ones place): 0 to 9

According to 3.1 Setting Flow,

 complete the settings or shift to other setting menu.

When the present time setting has been completed and then the operating mode is entered, the clock status lights up.

Setting Menu

If the clock status does not light up, check the present time setting.

When 'E05' appears at the bottom line as the right screen, the time setting is not correct.
*The right figure illustrates an example for the setting of Feb. 31.
If the error code appears, press SET, review the setting, and set from (3)Present time setting (Day).

1. The present time can be set with MODBUS RTU or MODBUS TCP communication. For details on the setting, refer to Electronic Multi-Measuring Instrument ME Series MODBUS Interface specifications (Ref. No. LSPM-0075).
2. The clock accuracy is ± 1 minute per month, typical (at $+25^{\circ} \mathrm{C}$). To adjust the clock drift, regularly perform the present time setting.
3. In order to use the built-in logging function, be sure to set the present time. Otherwise, the function

Note

 will not operate.4. The clock of the built-in logging function is not equipped with power interruption backup. After the startup, be sure to set the present time setting.
When an optional plug-in module of ME-0000BU-SS96 or ME-0000BU25-SS96 is installed, the power interruption backup of the clock operation is executed because it has the built-in battery for backup.
5. After the present time setting, when an optional plug-in module of ME-0000BU-SS96 or ME-0000BU25-SS96 is installed, set the present time again.

3. How to Set up

3.15. Setting Confirmation Menu 1 to 9 : Confirming the Settings in the Setting Menu 1 to 8 and 9 Test Mode

-Setting Confirmation

In the operating mode, press SET for 2 seconds or more to execute the operation.

\qquadSetting confirmation menu	In the setting confirmation menu, the screen switching and operation methods are the same as the setting menu 1 to 8. For details, refer to each setting menu.
Note: In the setting confirmation mode, setting change is not possible.	

-Test Mode

In the operating mode, press SET for 2 seconds or more and then set the setting confirmation menu number to 9 to enter the test mode.
For details about how to use the test mode, refer to 4 How to Use Test Mode.

3. How to Set up

3.16. Initialization of Related Items by Changing a Setting

When you change a setting, the related setting items and measuring data (maximum and minimum values) are initialized. For details, refer to the following table.

- It turns to the default setting.

O: It turns to the default setting according to the phase wire system.
Note1: For 1 -phase 3 -wire system, the setting change between ' 1 N 2 display' and ' 1 N 3 display' does not cause initialization
Note2: The communication option unit is reset.

3. How to Set up

3.17. Initialization of All Settings

The following operation enables to reset all settings to the factory default. It is only for the settings. Measured active energy, reactive energy, and operating time are not changed.
For details on the initialization of maximum and minimum values, refer to $\mathbf{3 . 1 6}$ Initialization of Related Items by Changing a Setting.
*For example, if the phase wire system setting is changed by initializing all settings, all maximum and minimum values will be reset.

To initialize all settings, display the CANCEL screen in the setting mode and then execute the following operation.
For details on how to display the CANCEL screen, refer to 3.1 Setting Flow.

Note
When all settings are initialized, back up the logging data before the initialization.

3. How to Set up

3.18. Settings for Special Display Pattern POO

If you want to set a display pattern other than P01 or P02, P00 is available to freely set display items. This setting is conducted in the setting menu 1 . The explanation here begins with the settings for P00 at 2)Display pattern in the setting menu 1. For other operations, which are not explained here, refer to 3.2 Setting Menu 1.
(1) Max four screens are available and 16 measuring items can be displayed.

From the first line to the third line, each selectable item is A, DA, V, W, var, VA, PF, or Hz .
At the fourth line, Wh, -Wh, varh, and VAh are selectable.
(2) As an example, the following display pattern is used for explanation.

(3) How to set up

You will set up a display pattern.
(1) Select 'P00.'

Select 'P00' with \dagger or \bigodot and then press SET.
(2) Set the first line to 'DM A' in the screen 4-1. Select 'DM A' with \dagger or \bigodot and then press SET.
(3) Set the second line to ' V ' in the screen 4-1. Select 'V' with $甲$ or \bigodot and then press SET.
(4) Set the third line to no display in the screen 4-1. Select '---' with \bigodot or \bigodot and then press SET. $^{\text {St }}$.
(5) Set the fourth line to no display in the screen 4-1.

Select '---' with \dagger or \bigodot and then press SET.

3. How to Set up

3.18. Settings for Special Display Pattern POO

Continued form the previous page
(6) You will set up the display of screen 4-2. Select ' $y E S$ ' with \bigodot or \bigodot and then press SET.
*When the screen 2 is not necessary to display, select ' $n o$ ' and press SET.
(7) Set the first line to ' W ' in the screen 4-2. Select 'W' with \dagger or \bigodot and then press SET.
(8) Set the second line to 'var' in the screen 4-2. Select 'var' with \dagger or \bigodot and then press SET .
(9) Set the third line to 'PF' in the screen 4-2. Select 'PF' with \dagger or \bigodot and then press SET.
(10) Set the fourth line to 'Wh' in the screen 4-2.

Select 'Wh' with \dagger or \bigodot and then press SET.

Return to the settings of the upper line in the screen 4-1.

(11) Set the screen $4-3$ to hidden.

(Hereafter same as the setting menu 1)

Note	1. The following measuring items cannot be set in the display pattern of POO. Set them in the setting menu 3 and 8 . -Harmonic current, Harmonic voltage, Current unbalance rate, Voltage unbalance rate, Operating time, CO_{2} equivalent
	2. It is not possible to specify phases of current and voltage. In the operating mode, press \qquad PHASE to switch the phase.
	3. The following measuring items can be set for 3 -phase 4 -wire system only. -Current N -phase, Current demand N -phase

3. How to Set up

3.19. Example for Easy Setup

The following example illustrates an easy setup.
Setting Example

- Model: ME96SSRB-MB (without optional plug-in module)
- Phase wire system: 3-phase 4-wire
- Measuring element: A, V, W, PF
- Input Voltage:

220/380 V

- CT primary current: 200 A
- CT Secondary current: 5 A
- Frequency: $\quad 50 \mathrm{~Hz}$
- MODBUS RTU: Address: 1, Baud rates: 19.2 kbps, Parity: even, Stop bit: 1

Setting Procedure

\square shows the item where setting change is necessary.
Note: For details on the settings, refer to 3.2.
Operating mode
刁 Press SET and RESET simultaneously for 2 seconds

4. How to Use Test Mode

The test mode has function useful for startup of equipment.
The following table shows a list of functions in the test mode.

Test menu	Description
1. Communication test	For models with communication function, without measurement (voltage/current) input, it is possible to return fixed numerical data. Use this for checking with the host system.
2. Alarm output/ Digital output test	For models with alarm/digital output function, without measurement (voltage/current) input, it is possible to check alarm output (digital output) operation. Use the check of connection with the destination.
3. Zero/Span adjustment for analog output	For the model with analog output function, zero/span adjustment is possible for analog output. Use it for adjustment to the receiver side or output change.
4. Analog output test	For the model with analog output function, without measurement (voltage/current) input, it is possible to check analog output operation. Use the check for connection with the receiver side.
5. Pulse output test	For the model with pulse output function, without measurement (voltage/current) input, it is possible to check pulse output operation. Use the check for connection with the receiver side.
F. Functions incorrect wiring	
fort	1Pattern display for incorrect When either a voltage input or current input is incorrectly wired, this function automatically determines incorrect wiring and displays its part on the screen. It is easier to find out the incorrect part and useful to check the connection. *Note
wiring	2) Support display for determining incorrect wiring This function displays a current phase angle, a voltage phase angle, and active power, voltage, and current value of each phase. By checking each display and 9.3 A List of Examples for Incorrect Wiring Display, it is easier to determine incorrect wiring of measurement (voltage/current) input.

*Note: The function cannot determine all incorrect wiring. If both a voltage input and current input are incorrectly wired, a different pattern may be displayed.

Test procedure
(1) Press SET for 2 seconds to enter the setting confirmation mode.
(2) With \oplus or Θ, select ' 9 ' in the setting confirmation menu number
(3) Press SET to enter the test mode.
(4) Execute the test in each test menu.

Operating mode

| Note | 1. When ME-0000BU-SS96 or ME-0000BU25-SS96 is activated, entering the test mode causes the power outage of
 ME-0000BU-SS96 or ME-0000BU25-SS96 so as not to log the test data. As a result, the system log is recorded for
 power outage and COM of the LED blinks. |
| :--- | :--- | :--- |
| 2. Entering from the test mode to the operating mode restarts this instrument. Therefore, if the built-in logging function is
 activated, the system log for startup will be recorded. In addition, the present time setting is required again. | |

4.1. Test Menu 1: Communication Test

Set the setting confirmation menu number to 9 to enter the test mode In the test mode, the following operation is available.

4. How to Use Test Mode

4.2. Test Menu 2: Alarm Output/Digital Output Test

In the test mode, the following operation is available.

- When ME-4210-SS96B or ME-0052-SS96 (optional plug-in module) is not installed, this menu is not displayed.
- Even when ME-4210-SS96B (optional plug-in module) is installed, if alarm output is not set at the setting menu 5: Pulse/Alarm output function, this menu will not be displayed.
- When ME-4210-SS96B (optional plug-in module) is installed, if alarm output is set for CH1 only at the setting menu 5: Pulse/Alarm output function, the screen for (2)Alarm/Digital output CH 2 test will not be displayed. Likewise, if alarm output is set for CH 2 only, the screen for (1)Alarm/Digital output CH 1 test will not be displayed.

4. How to Use Test Mode

4.3. Test Menu 3: Zero/Span Adjustment for Analog Output

In the test mode, the following operation is available.
When ME-4210-SS96B (optional plug-in module) is not installed, this screen is not displayed.

4. How to Use Test Mode

4.4. Test Menu 4: Analog Output Test

In the test mode, the following operation is available.
When ME-4210-SS96B (optional plug-in module) is not installed, this menu is not displayed.

Note: The output item selected at Setting menu 6: Analog output settings is displayed.

4. How to Use Test Mode

4.5. Test Menu 5: Pulse Output Test

In the test mode, the following operation is available.

- When ME-4210-SS96B (optional plug-in module) is not installed, this menu is not displayed.
- Even when ME-4210-SS96B (optional plug-in module) is installed, if pulse output is not set at the setting menu 5: Pulse/Alarm output function, this menu will not be displayed.
- When ME-4210-SS96B (optional plug-in module) is installed, if pulse output is set for CH 1 only at the setting menu 5: Pulse/Alarm output function, the screen for (2)Pulse output CH 2 test will not be displayed. Likewise, if pulse output is set for CH 2 only, the screen for 1 Pulse output CH 1 test will not be displayed.

4.6. Test Menu 6: Function for Determining Incorrect Wiring

In the test mode, the following operation is available.

Note: Select a power factor condition by referring to the following points:
-Power factor: LAG \rightarrow Power factor is lagging for load of inductive machines. Assume 1 to lag 0.5.
-Power factor: Around $1 \rightarrow$ Power factor is around 1 due to resistance load or power factor improvement. Assume lead 0.866 to lag 0.866 .
-Power factor: LEAD $\rightarrow \quad$ Power factor is leading for capacitor panel. Assume lead 0 to 1.
*If the Err display appears at the bottom line of the LCD, press \bigodot and then select the power factor condition again.
■Check multiple alternatives (For 3-phase 3-wire/1-phase 3-wire/1-phase 2-wire system) There may be multiple patterns of incorrect wiring according to the incorrect wiring situation. For the above three systems, press Displar to switch the screen and check the incorrect wiring patterns.

■There are multiple incorrect wiring parts. (For 3-phase 4-wire system)
For this phase wire system, multiple incorrect wiring parts of voltage or those of current are detected and displayed on each screen.

4.6. Test Menu 6: Function for Determining Incorrect Wiring

Continued from the previous page. It is not possible to detect incorrect wiring If the screen is displayed as the following, it is not possible to detect incorrect wiring. Check measurement (voltage/current) input or press \oplus to check 2Support display for determining incorrect wiring.	
Display	Description
01	This is low voltage. Apply about 70 percent or more of the direct voltage or secondary voltage setting.
ni not gound$\quad 002$	This is low current. Apply about 5 percent or more of the rated current of the instrument.
國	This is in an unbalanced state. For 3-phase 3-wire system, it is not possible to detect incorrect wiring if there is a 10 percent or more difference between values in 1 -phase and 3 -phase of current.
04	There may be multiple incorrect wiring parts. Check (2)Support display for determining incorrect wiring.

(2)Support display for determining incorrect wiring

Continued from the previous page.
It is not possible to detect incorrect wiring
If screen is displayed as the following, it is not possible to detect incorrect wing. determining incorrect wiring.

Phase angle, active power, voltage, and current are displayed.
<For 3-phase 4-wire system>

Phase angle (voltage)
Phase angle (current)

Current

Active power

<For 3-phase 3-wire system>

Phase angle (voltage)
Phase angle (current)

Continued to the next page.
4.6. Test Menu 6:Function for Determining Incorrect Wiring

Continued from the previous page.
■ Phase angle
The phase angle is displayed clockwise based on V_{12} (0 degree).

$\angle \mathrm{V}_{32}$-phase angle between V_{32} and V_{12}
$\angle I_{1 \text {-phase }}$ angle between I_{1} and V_{12}
$\angle I_{3 \text {-phase }}$ angle between I_{3} and V_{12}
Note: For 1-phase 3-wire, read the phase as follows.
$\mathrm{V}_{12} \rightarrow \mathrm{~V}_{1 \mathrm{~N}}$
$\mathrm{V}_{32} \rightarrow \mathrm{~V}_{3 \mathrm{~N}}$
$\mathrm{I}_{3} \rightarrow \mathrm{I}_{2}$ or I_{3}

Display examples of incorrect wiring support function
For display examples of each incorrect wiring, refer to 9.3 A List of Examples for Incorrect Wiring Display.
<To shift to other test menu>
\Rightarrow Select other test menu number and then press SET. .
Test Menu
$<$ To end the test mode>
\Rightarrow Select End in the test menu number and then press SET
The screen will return to the operating mode.

4. How to Use Test Mode

4.6. Test Menu 6: Function for Determining Incorrect Wiring

4.6.1. Incorrect Wiring Patterns Detected by (1)Pattern display of incorrect wiring

This function is designed with the assumption that either a current input or a voltage input is incorrectly wired in positive phase sequence. It is not possible to determine all incorrect wiring
Dashed lines indicate incorrect wiring parts.
■For 3-phase 4-wire system

No.	Wiring diagram	No.	Wiring diagram	No.	Wiring diagram		Wiring diagram
1		3		8	Reverse connection of 1 side CT, 2 side CT, and 3 side CT	13	Reverse connection between terminals P2 and P3
		4		9	Switch between 1 side CT and 2 side CT	14	Reverse connection between terminals P1 and P3
		5		10		15	Reverse connection between terminals P1 and PN
		6	Reverse connection of 2 side CT and 3 side CT	11		16	Reverse connection between terminals P2 and PN
2		7	Reverse connection of 1 side CT and 3 side CT	12	Reverse connection between terminals P1 and P2	17	Reverse connection between terminals P3 and PN

*1. Correct measurement is possible even in reversed phase sequence.
*2. For low voltage circuits, it is not necessary to ground the VT and CT secondary side circuits.

4. How to Use Test Mode

4.3. Test Menu 6: Functions for Determining Incorrect Wiring
4.3.1. Incorrect wiring patterns detected by (1)Pattern display of incorrect wiring
-For 3-phase 3-wire system

No.	Wiring diagram	No.	Wiring diagram	No.	Wiring diagram
1		6	Reverse connection between terminals P1 and P2	11	
2		7	Reverse connection between terminals P2 and P3	12	
3		8	Reverse connection between terminals P1 and P3	13	Reverse connection of 1 side VT and 3 side VT
4	Reverse connection of 1 side and 3 side CT	9	P2, P3, and P1 terminals of VT are connected to P1, P2, and P3 terminals of the instrument in that order.	14	
5	Switch between 1 side CT and 3 side CT	10	P3, P1, and P2 terminals of VT are connected to P1, P2, and P3 terminals of the instrument in that order		

*1. Correct measurement is possible even in reversed phase sequence.
*2. For low voltage circuits, it is not necessary to ground the VT and CT secondary side circuits.

4. How to Use Test Mode

4.3. Test Menu 6:Functions for Determining Incorrect Wiring

4.3.1. Incorrect wiring patterns detected by (1)Pattern display of incorrect wiring

■For 1-phase 3-wire system *1

No.	Wiring diagram	No.	Wiring diagram	No.	Wiring diagram
1		5	Switch between 1 side CT and 3 side CT	8	Reverse connection between terminals P1 and P3
2		6	Reverse connection between terminals P1 and PN	9	PN, P2, and P1 are connected to P1, PN, and P3 terminals of the instrument in that order.
3		7	Reverse connection between terminals PN and P3	10	P3, P1, and PN are connected to P1, PN, and P3 terminals of the instrument in that order.
4	Reverse connection of 1 side and 3 side CT				

*1. On the screen, the PN terminal is displayed as 'P2.' Read as 'PN.'

For 1-phase 2-wire system

5.1. Basic Operation

The following charts illustrate how to use basic operation.

5.1.1. How to Switch the Measurement Screen

Press DISPLAY to switch the measurement screen.

The display item and order vary depending on the phase wire system, display pattern, and additional screen. For details on the display pattern, refer to 6.1 Display Pattern List.

In addition, by pressing DISPLAY and Θ, the measurement screen is switched in reverse.

5.1.2. How to Switch Phase Display

Press PHASE to switch the phase of voltage/current.

The phase switching is not available in the following cases:

- Measuring element without phase (Frequency)
- Active power, reactive power, apparent power, and power factor for other than 3-phase 4-wire system - 1 -phase 2 -wire system setting

Example of display switching of phase (Phase wire system: 3-phase 4-wire)

5. Operation

5.1. Basic Operation

5.1.3. How to Display the Cyclic Mode

In the cyclic mode, the measurement screen or phase display automatically switches every 5 seconds.
When you press DISPLAF for 2 seconds, the screen enters the cyclic display mode of measurement screen.
Pressing phase for 2 seconds enters the cyclic display mode of phase.
To end the cyclic mode, press any button other than SET.
Note 1: Before shift to the cyclic mode, the screen blinks 3 times.
Note 2: In the cyclic display mode of measurement screen, the screen number is not displayed at switching display.
Note 3: On the Max/Min value screen, the cyclic mode is available.
Example of cyclic display (Phase wire system: 3P4W, Display pattern: P01)

5. Operation

5.1. Basic Operation

5.1.4. Harmonics Display

The harmonic RMS value and distortion ratio (content rate) can be displayed.
To display them, you must set the harmonics display. For details on the settings, refer to 3.6.

■Measuring elements

Degree	Harmonic current		Harmonic current N-phase		Harmonic voltage	
	RMS value	Distortion ratio (Content rate)	RMS value	Distortion ratio (Content rate)	RMS value	Distortion ratio (Content rate)
Harmonic total	0	\bigcirc	0	-	0	\bigcirc
$1^{\text {st }}$ (Fundamental wave)	\bigcirc	-	\bigcirc	-	0	-
$\begin{aligned} & 3^{3^{\text {rd }}}, 5^{\text {th }}, 7^{\text {th }}, 9^{\text {th }}, 11^{\text {th }}, 13^{\text {th }}, \\ & 15^{\text {th }}, 17^{\text {th }}, 19^{\text {th }} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc

Display examples

Note: Degree total is displayed as 'ALL.'
How to switch the degree (Phase wire system: 3-phase 4-wire)
Press \dagger or Θ to switch the degree.
By pressing PHASE , the RMS value and distortion ratio (content rate) are switched.

Note: The following table shows no phases in harmonic measurement display.

Phase wire system		Harmonic current	Harmonic voltage
3-phase 3-wire	3CT	-	31 -phase
	2CT	2 -phase	31-phase
1-phase 3-wire	1N2 display	N-phase	12-phase
	1N3 display	N-phase	13-phase

5. Operation

5.1. Basic Operation

5.1.5. Maximum/Minimum Value Display

On the Max/Min value screen, a maximum value, present value, and minimum value are displayed in one screen by measuring item.
$\left(\begin{array}{l}\text { However, for harmonics, the following maximum values only are displayed. } \\ \text { - Harmonic current: The total/1 } 1^{\text {st }} \text { to } 19^{\text {th }} \mathrm{RMS} \text { value of the phase where a value was the largest in every phase. } \\ \text { - Harmonic voltage: The total distortion ratio/ } 1^{\text {st }} \mathrm{RMS} \text { value } / 3^{\text {rd }} \text { to } 19^{\text {th }} \text { content rate of the phase where a } \\ \text { value was the largest in every phase. }\end{array}\right.$
Display examples

5.1.6. How to Display Maximum/Minimum Value

When you press MAX/MIN, the screen switches to the Max/Min value display. Pressing MAX/MIN again returns to the present value display.

Example of display switching between the present value and Max/Min value

Presentt value display

Max/Min value display

On the Max/Min value screen, the following display switching is available as the present value screen.

Button operation	Function
Press Displar	Measuring items are switched in the following order. However, measuring items that are not included in the phase wire system, display pattern, and additional screen are not displayed.
Press PHASE	For 3-phase 4-wire system, the phases of the measuring items are switched as follows: - A_{N}, D_{N}, and Hz do not have phase switching. For 3-phase 3-wire/1-phase 3-wire system, the phases of A, DA and V are switched. For 1 -phase 2 -wire system, no phase is switched.
Press \dagger or \bigodot	Switch the harmonic degree (available on the harmonics display screen)
Press Displar for 2 seconds	Enter the cyclic display mode of measurement screen
Press PHASE for 2 seconds	Enter the cyclic display mode of phase

5.1.7. How to Clear Maximum/Minimum Value

On the Max/Min value screen, pressing RESET for 2 seconds clears the maximum and minimum values of the displayed measuring item and turns to the present values.
In addition, pressing RESET and \oplus simultaneously for 2 seconds on the screen clears all maximum and minimum values and turns to the present values.
When password protection is enabled, the maximum and minimum values are cleared after you enter the password. Communication function also enables to clear all maximum and minimum values. In this case, password input is not necessary.

5. Operation

5.1. Basic Operation

5.1.8. Active Energy/Reactive Energy/Apparent Energy Display

Display type

The following table shows the display type of active/reactive/apparent energy based on the full-load power.
Full-load power $[\mathrm{kW}]=\frac{\alpha \times(\text { VT primary voltage }) \times(\text { CT primary current })}{1000}$
*1. For 3-phase 4-wire system, the VT primary voltage and direct voltage are calculated using phase voltage.

$$
\left(\begin{array}{rll}
\text { a: } & \text { 1-phase 2-wire } \\
2 & \text { 1-phase 3-wire } \\
\sqrt{3} & \text { 3-phase 3-wire } \\
3 & \text { 3-phase 4-wire }
\end{array}\right)
$$

*2. For 1-phase 3-wire system, the VT primary voltage is calculated using phase voltage.
*3. For the direct voltage setting, direct voltage is used for calculation instead of VT primary voltage.
*4. For reactive energy and apparent energy, ' kW ' in the above equation is read as 'kvar' and 'kVA' respectively.

Full-load power [kW, kvar, kVA]	Display type	
Digital display	Unit	

The measurement display blinks when active energy (imported) is measured. It goes off at no measuring point.

To display the screen of *1, you must change the settings for active/reactive energy measurement in 3.6.

Reactive energy (exported lead)*1

5.1.9. How to Change the Display Digit of Active/Reactive/Apparent Energy

By changing the unit (M, k, or none) of active/reactive/apparent energy or by displaying the lower enlarged view, you can check the upper or lower digit of a measured value.
Press \oplus and \bigodot simultaneously for 2 seconds to switch.
Example of switching active energy (imported): $012,345,678,901,234.567 \mathrm{~Wh}$

Note1: Active, reactive, and apparent energy that are not displayed on the screen will be all changed to the same unit.
Note2: If the set value of VT primary voltage or that of CT primary current is large, the lower digit less than the measurement range will indicate ' 0 .'

5. Operation

5.1. Basic Operation

5.1.10. How to Reset Active/Reactive/Apparent Energy to Zero

When you press SET, RESET, and PHASE simultaneously for 2 seconds, active, reactive, and apparent energy values will be reset to zero.
When password protection is enabled, the values are reset after you enter the password.
In addition, communication function enables to reset all active, reactive, and apparent energy values to zero.
In this case, password input is not necessary.
Note1: This function is available on the present value screen only.
Note2: The values of active, reactive, and apparent energy that are not displayed on the screen will be also all reset to zero.
Note3: Periodic active energy can be separately reset to zero. Refer to 5.2.6.

5.1.11. How to Measure Reactive Energy (2 quadrant/4 quadrant measurement)

For measurement of reactive energy, there are two types on how to take a quadrant as follows.
The measurement method of reactive energy can be switched at the active/reactive energy measurement settings in the setting menu 3.
In addition, when you set to IEC mode in the setting menu 8, 2 quadrant measurement is executed even if you set to 'Combination III' or 'Combination IV', which executes 4 quadrant measurement, at the active/reactive energy measurement settings.

When you select 4 quadrant measurement and IEC mode at each setting, 'Imported lag' and 'Exported lead' of reactive energy are displayed on the additional screen. However, they are not integrated.
For details on how to switch the 2 quadrant/4 quadrant measurement, refer to 3.6.
For details on how to switch the IEC mode setting, refer to 3.13.

Measurement method	Description
$4 \quad$ quadrant	Each of four quadrants (Imported lag, Imported lead, Exported lag, and Exported lead) is measured as one division. It is suitable to measure systems with a private power generator. However, a dead region occurs at the boundary of each division. Accordingly, reactive energy cannot be measured at where power factor is near 1 or zero.
2 quadrant	'Imported lag' and 'Exported lead' are measured as one division, and in the same way, 'Imported lead' and 'Exported lag' are measured as one division. Therefore, a dead region does not occur at where power factor is near zero and reactive energy can be measured even there. It is suitable to measure systems without a private power generator and reactive energy of capacitor load where power factor is zero generally.

5. Operation

5.1. Basic Operation

5.1.12. Each Measuring Item Display during Power Transmission

The following table shows symbol display (\pm) for each measured value according to the power transmission state.
For details on how to switch the 2 quadrant/4 quadrant measurement, refer to 3.6.
For details on how to switch IEC mode, refer to 3.13.

			Imported lag	Imported lead	Exported lag	Exported lead
	A, DA, AN, DAN, V, Hz, VA, HI, Hin, HV		Unsigned			
	W		Unsigned		'-' sign	
-var	var	Normal mode (2 quadrant measurement)	Unsigned	־- sign	'-' sign	Unsigned
		Normal mode (4 quadrant measurement)	Unsigned	'- sign	Unsigned	'-' sign
		IEC (V) mode	Unsigned	--' sign	'-' sign	Unsigned
	Each phase	IEC (A) mode	Unsigned	'-'sign	'-' sign	Unsigned
	Total		Unsigned	Unsigned	Unsigned	Unsigned
	PF	Normal mode (2 quadrant measurement)	Unsigned	'-'sign	'-' sign	Unsigned
		Normal mode (4 quadrant measurement)	Unsigned	-'s sign	Unsigned	'-' sign
		IEC (V) mode	Unsigned	-- sign	'-' sign	Unsigned
		IIEC (A) mode	Unsigned	'-‘ sign	--'sign	Unsigned

5.1.13. Demand Time Period and Demand Value of Current demand

The demand time period (t_{0}) represents a time period until a measured value (l_{0}) displays 95% of the input (I) when continuously energized by constant input (I). To display 100% of the input (I), approximately three times the time period (to) is required.

The demand value represents a measured display value with the above feature on time period and it indicates the overall average value within the demand time period.
The demand value changes over a relatively long time period. Therefore, it is not affected by input change for a short time. Accordingly, it is suitable to monitor overload of transformer.

5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

The following shows how to use the instrument depending on the application.

5.2.1. Upper/Lower Limit Alarm Display and Action

When the set upper/lower limit alarm value is exceeded, the display starts to blink and an alarm is output.
*For details on how to set the upper/lower limit alarm, refer to 3.8.

- Action for alarm

Alarm generating: When the set alarm value is exceeded, the display blinks and alarm contact is closed. *Note
Alarm cancellation: When an alarm is cancelled, the display turns to the normal mode and alarm contact is open.
Note: When you set the alarm delay time, an alarm will generate if the set upper/lower limit alarm value is exceeded and this situation continues for the alarm delay time.

Alarm reset method			Measured value < Upper limit alarm valueMeasured value $>$ Lower limit alarm value	
Automatic (Auto)	Screen			
$\begin{aligned} & \text { Manual } \\ & \text { (HoLd) } \end{aligned}$	Screen	ALARIII and HI>or <LO blink (Alarm generating)	 (Alarm retention)	

Note1: If measuring items of alarm generating are displayed on the screen, the digital value, unit (A, V, W, var, PF, Hz, \%, DM, and THD), and phase ($1,2,3$, and N) will be displayed according to the alarm status as the following table.

Alarm status	Digital value	Unit	Phase
Alarm generating	Blink *	Blink	Blink *
Alarm retention	Light up	Blink	Blink *
Alarm cancellation	Light up	Light up	Light up

*When the phase of no alarm is displayed on the screen, it does not blink.

[^1]5. Operation
5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

Monitored phase of upper/lower limit alarm item
The phase for monitoring the upper/lower limit alarm varies depending on the measuring item. For details, refer to the following table.

Upper/Lower limit alarm item	Monitored phase			
	3-phase 4-wire	3-phase 3-wire $(3 \mathrm{CT}, 2 \mathrm{CT})$	1-phase 3-wire $(1 \mathrm{~N} 2)$	1-phase 3-wire $(1 \mathrm{~N} 3)$
A upper limit, DA upper limit	$1,2,3$	$1,2,3$	$1, \mathrm{~N}, 2$	1, N, 3
A lower limit, DA lower limit	$1,2,3$	$1,2,3$	1,2	1,3
AN upper limit, DAN upper limit	N	-	-	-
V (L-L) upper limit *Note1	$12,23,31$	$12,23,31$	$1 \mathrm{~N}, 2 \mathrm{~N}, 12$	$1 \mathrm{~N}, 3 \mathrm{~N}, 31$
V (L-L) lower limit *Note1	$12,23,31$	$12,23,31$	$1 \mathrm{~N}, 2 \mathrm{~N}, 12$	$1 \mathrm{~N}, 3 \mathrm{~N}, 31$
V (L-N) upper limit	$1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}$	-	-	-
V (L-N lower limit	$1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}$	-	-	-
W upper limit, var upper limit, PF upper limit	Total	Total	Total	Total
W lower limit, var lower limit, PF lower limit	Total	Total	Total	Total
Hz upper limit	1 N	12	1 N	1 N
Hz lower limit	1 N	12	1 N	1 N
HI total RMS value upper limit	$1,2,3$	R *Note2	1,2	1,3
HIN total RMS value upper limit	N	-	-	-
THDv upper limit	$1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}$	12,23	$1 \mathrm{~N}, 2 \mathrm{~N}$	$1 \mathrm{~N}, 3 \mathrm{~N}$
DW (Predict/Present/Last value) upper limit	Total	Total	Total	Total
Dvar (Predict/Present/Last value) upper limit	Total	Total	Total	Total
DVA (Predict/Present/Last value) upper limit	Total	Total	Total	Total

Note1: For 12-phase or 31-phase of 1-phase 3-wire system, alarm monitoring is executed based on twice the set upper/lower limit alarm value.
Note2: Harmonic current 2-phase is measured for 3-phase 3-wire system (3CT) only.

5. Operation

5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

5.2.2. How to Cancel the Upper/Lower Limit Alarm

The alarm cancellation method differs depending on the alarm reset setting. In addition to the following methods, communication function is available to cancel the upper and lower limit alarm.

Alarm reset method	How to cancel
Automatic (Auto)	When a measured value is below the set upper/lower limit alarm value, the alarm is automatically reset.
Manual (HoLd)	Even after a measured value is below the set upper/lower limit alarm value, the alarm is retained. After the measured value is below the alarm value, operate the following alarm reset. Note: On the Max/Min value screen and on the digital input screen, the alarm reset operation is not possible. <To cancel the alarm of a selected item> Display the item of alarm generating and then press reseit to cancel the alarm. $\left(\begin{array}{l}\text { For the item that has phases such as current or voltage, you must press RESET } \\ \text { phase display to cancel the alarm. }\end{array}\right]$ <To cancel alarms of all items> In the operating mode, press ${ }_{\text {Resse }}$ for 2 seconds to cancel all alarms at once. Note: When the backlight is blinking, first stop the blinking backlight and then execute the alarm cancellation operation.

Note: To prevent chattering, the determination whether a measured value is below the upper/lower limit alarm value is conducted out of dead region below the setting step of the alarm value.

5.2.3. How to Stop Backlight Blinking Caused by the Upper/Lower Limit Alarm Generation

Press RESET to stop the backlight blinking.

5.2.4. Upper/Lower Limit Alarm Item on the Alarm Contact

Settings		Alarm item for alarm output	
Digital output function 1	Digital output function 2	C1A, C1B terminals	C2A, C2B terminals
Alarm output	Alarm output	Alarm item 1	Alarm item 2 to 4 (output in a batch at one of them)
Alarm output	Pulse output	Alarm item 1 to 4 (output in a batch at one of them)	No alarm
Pulse output	Alarm output	No alarm	Alarm item 1 to 4 (output in a batch at one of them)
Pulse output	Pulse output	No alarm	No alarm

5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

5.2.5. Periodic Active Energy Display

Active energy can be measured by dividing into a maximum of three time periods.
Even when the periodic active energy display is set to 'oFF (Not display)', the periodic active energy is measured.
*For details on the settings, refer to 3.13 Setting Menu 8: Special Settings (Settings for Operating Time, IEC Mode, and CO_{2} equivalent).
The time period is switched by communication or by digital input (DI) according to the settings.
It is not possible to switch it manually (by button operation).
(1) The two-time period control by communication control or with one contact

<For communication control>
- When the selection bit is ON (1), active energy (imported) is accumulated
periodic active energy n . ($\mathrm{n}=1,2$)
- When the selection bit is OFF (0), active energy (imported) is not
accumulated to periodic active energy n . ($\mathrm{n}=1,2$)
<For digital input (DI) control>
- Without digital input (DI), active energy (imported) is accumulated to
periodic active energy 1 and not accumulated to periodic active energy 2.
- With digital input (DI), active energy (imported) is not accumulated to
periodic active energy 1 and accumulated to periodic active energy 2 .
<The setting of no switching>
- Active energy (imported) is accumulated to periodic active energy 1 and
periodic active energy 2. (No switching of time period)

nai	nal ${ }^{2}$

(2) The three-time period control by communication control or with three contacts
<For communication control>
-When the selection bit is ON (1), active energy (imported) is accumulated to periodic active energy n. $(n=1,2,3)$
-When the selection bit is $\operatorname{OFF}(0)$, active energy (imported) is not accumulated to periodic active energy n . $(\mathrm{n}=1,2,3$)
<For digital input (DI) control>
-With digital input (DI1), active energy (imported) is accumulated to periodic
 active energy 1 and not accumulated to periodic active energy 2 or periodic active energy 3.
-With digital input (DI2), active energy (imported) is accumulated to periodic active energy 2 and not accumulated to periodic active energy 1 or periodic active energy 3.
-With digital input (DI3), active energy (imported) is accumulated to periodic active energy 3 and not accumulated to periodic active energy 1 or periodic active energy 2.
When multiple digital inputs (DI) are activated, each periodic active energy is accumulated.
Example: When (DI1) and (DI3) of digital input are activated, active energy (imported) is accumulated to periodic active energy 1 and periodic active energy 3 and not accumulated to periodic active energy 2.
<The setting of no switching>

- Active energy (imported) is accumulated to periodic active energy 1 ,
periodic active energy 2 and active energy 3. (No switching of time period)
In the operating mode, when you are switching the measurement screen with DISPLAY, the periodic active energy is displayed.

5.2.6. How to Reset Periodic Active Energy to Zero

When you display either of the periodic active energy 1,2 , or 3 on the screen and then press \oplus and RESET for 2 seconds, the periodic active energy displayed on the screen only is reset to zero.
When password protection is enabled, it is reset to zero after you enter the password.
In addition, communication function enables to reset the periodic active energy to zero separately or simultaneously. In this case, password input is not necessary.

5. Operation

5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

5.2.7. Rolling Demand Display and Calculation

Rolling demand is calculated by dividing the active/reactive/apparent energy during a specified period (interval)
*1 by the length of that period.
For block interval demand, you specify a period of time interval (or block) that this instrument uses for the demand calculation
*For details on the rolling demand display settings, refer to 3.12.
The following two types can be selected for rolling demand action according to the settings.
(1) Rolling block

Select an interval and a subinterval from 1 to 60 minutes in 1-minute increments.
The interval must be divided into subintervals with equal length.
The rolling demand is updated at the end of each subinterval.
<Example of interval: 15 minutes, subinterval: 5 minutes>

Note: When the rolling demand time period adjustment is executed, the timing of time period begins with 0 minute.
(2) Fixing block

Select an interval from 1 to 60 minutes in 1-minute increments.
The rolling demand is calculated and updated at the end of each interval.
To be fixing block, set the same time to both the interval and subinterval.
< Example of interval: 15 minutes, subinterval: 15 minutes >

Note: When the rolling demand time period adjustment is executed, the timing of time period begins with 0 minute.
In the operating mode, when you are switching the measurement screen with DISPLAY, the rolling demand is displayed.
*1: The following table shows the accumulated values used for rolling demand calculation.

Item		IEC mode setting	Note
	Normal mode	IEC mode	
Rolling demand active power (DW)	Active energy (Imported)	Active energy (Imported) - Active energy (Exported)	
Rolling demand reactive power (Dvar)	Reactiveenergy (Imported lag) + Reactive energy (Exported lead)	[Reactive energy (Imported lag) + Reactive energy (Exported lead)] - [Reactive energy (Exported lag) + Reactive energy (Imported lead)]	Refer to the following diagram
Rolling demand apparent power (DVA)	Apparent energy		

5. Operation

5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

5.2.8. Rolling Demand Predict Value

The rolling demand provides present, last, predict, and peak demand values.
The predicted demand value is calculated for the end of the present interval for each rolling demand, taking into account the energy consumption so far within the present (partial) interval and the present rate of consumption. The following illustration shows how a change in load can affect the predicted demand value for the interval. In this example, the interval is set to 15 minutes.
(1)

Item	Explanation
(1)	End of the last completed demand interval/ Beginning of the present interval
(2)	Partial interval
3	Change in load
(4)	Predicted demand value if load is added during interval; predicted demand value increases to reflect increased demand.
(5)	Predicted demand value if no load is added

5.2.9. Rolling Demand Time Period Adjustment

When the rolling demand is displayed on the screen, pressing \bigodot and \bigodot simultaneously for two seconds or more enables the rolling demand time period adjustment.
*Even when the time period adjustment is set to digital input, it is available with manual operation (button operation).
When password protection is enabled, it is available after you enter the password.
Although there is no item of the time period adjustment setting, communication function enables the rolling demand time period adjustment. In this case, password input is not necessary.

Select 'Execute' or 'Not execute' for the time period adjustment.

		Press \uparrow and \bigodot simultaneously for two seconds.				
	Operating mode		Demand time period adjustment screen			

5.2.10. How to Clear the Rolling Demand Peak Value

When the rolling demand is displayed on the screen, press \oplus and RESET simultaneously for two seconds to clear the rolling demand peak value.
When password protection is enabled, it is cleared after you enter the password.
Communication function also enables to clear it. In this case, password input is not necessary.

5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

5.2.11. Operating Time Display

According to the value set to the operating time count target (AUX, A, or V), measuring time is counted and displayed as operating time of load. To display it, you must set the operating time display.
Even when the operating time display is set to 'oFF (Not display)', operating time is counted.
*For details on the settings, refer to 3.13 Setting Menu 8: Special Settings (Settings for Operating Time, IEC Mode, and CO_{2} equivalent).
When the threshold of the set operating time count target is exceeded, operating time 1 and 2 are counted.

Item	3-phase 4-wire	1-phase 2-wire	Others
AUX (Auxiliary power)	$\underline{\text { AUX }}$	AUX	$\underline{\text { AUX }}$
A (Current)	$\mathrm{A}_{\mathrm{AVG}}$	A	$\mathrm{A}_{\mathrm{AVG}}$
V (Voltage)	$\mathrm{V}_{\mathrm{AVG}}(\mathrm{L}-\mathrm{N})$	V	$\mathrm{V}_{\mathrm{AVG}}(\mathrm{L}-\mathrm{L})$

In the operating mode, when you are switching the measurement screen with DISPLAY, operating time is displayed.

5.2.12. How to Reset Operating Time to Zero

When operating time 1 or operating time 2 is displayed on the screen, press RESET for 2 seconds to reset the operating time to zero.
*The operating time displayed on the screen only is reset to zero.
When password protection is enabled, it is reset to zero after you enter the password.
In addition, communication function enables to reset all operating times to zero. In this case, password input is not necessary.

5.2.13. CO_{2} Equivalent Display

The CO_{2} emissions that are converted from imported active energy can be displayed. To display them, you must set the CO_{2} equivalent display. For the display settings, refer to 3.13Setting Menu 8: Special Settings (Settings for Operating Time, IEC Mode, and CO_{2} equivalent).

The display format for CO_{2} equivalent varies depending on the full-load power as the following table.

Full-load power [kW]		Display format		
		Digital display		Unit
	Below 10	$\begin{aligned} & 3^{\text {rd }} \text { line } \\ & 4^{\text {th }} \text { line } \end{aligned}$	8888.88	kg
10 or more	Below 100	$\begin{aligned} & 3^{\text {rd }} \text { line } \\ & 4^{\text {th }} \text { line } \end{aligned}$	88888.8	kg
100 or more	Below 1000	$\begin{aligned} & \hline 3^{\text {rd }} \text { line } \\ & 4^{\text {th }} \text { line } \\ & \hline \end{aligned}$	888888	kg
1000 or more	Below 10000	$\begin{aligned} & 3^{\text {rd }} \text { line } \\ & 4^{\text {th }} \text { line } \\ & \hline \end{aligned}$	$\begin{array}{r} 888 \\ 8888.88 \end{array}$	kg
10000 or more	Below 100000	$3^{\text {rd }}$ line $4^{\text {th }}$ line	$\begin{array}{r} 888 \\ 88888.8 \end{array}$	kg
10000 or more		$\begin{aligned} & 3^{\text {rd }} \text { line } \\ & 4^{\text {th }} \text { line } \\ & \hline \end{aligned}$	$\begin{array}{r} 888 \\ 888888 \\ \hline \end{array}$	kg

Note: The CO_{2} equivalent is calculated based on the following calculating formula:
$\left[\mathrm{CO}_{2}\right.$ equivalent $=$ Active energy (imported) $\times \mathrm{CO}_{2}$ conversion rate setup value]
It is not an integrated value. If the CO_{2} conversion rate setting is changed, the value of CO_{2} emissions will be changed.

On the present value display, when you are switching the measurement screen with DISPLAY, the CO_{2} equivalent is displayed.

5.2.14. How to Clear the CO_{2} Equivalent

When the CO_{2} equivalent is displayed on the screen, press \oplus and ${ }_{\text {RESET }}$ for two seconds to clear the CO_{2} equivalent.
When password protection is enabled, it is reset to zero after you enter the password.
Communication function also enables to clear it separately or simultaneously. In this case, password input is not necessary.
5. Operation

5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

5.2.15. Digital Input/Output Status Display and Action

The contact status can be displayed by signal inputs such as the opening/closing signal of breaker or the alarm signal of overcurrent relay to the digital input (DI) terminal.
For the digital output (DO) terminal, the contact is open/closed by communication control.
To display the digital input/output status, the setting is necessary.
*For details on the setting, refer to $\mathbf{3 . 1 2}$.
Display examples
<When ME-0052-SS96 (optional plug-in module) is installed>

Digital input (D11 to Cl5)

In the operating mode, when you are switching the measurement screen with DISPLAY, the digital input/output status is displayed.
■Digital input reset method
The method how to retain the digital input status varies depending on the digital input reset method.

Reset method	How to cancel
Automatic (Auto)	If the digital input becomes OFF (open), the digital input status will automatically become OFF (open).
Latch (HoLd)	Once the digital input detects ON (closed), even if it becomes OFF (open), the digital input status remains as ON (closed) until the latch is cancelled. For example, When an alarm contact such as ACB is input, even if an alarm stops, the instrument retains the alarm state. Therefore, you will not overlook alarm generating.

Digital input conditions
The following table shows the digital input conditions.

Input conditions	DI terminal
Switch rating (Contact capacity)	$24 \mathrm{~V} \mathrm{DC} \mathrm{(19} \mathrm{~V} \mathrm{DC} \mathrm{to} 30 \mathrm{~V}$ DC), 7 mA or less
ON (closed)/OFF (open) time	Both of ON and OFF: 30 ms or more

5.2.16. How to Cancel the Latch for Digital Input

On the digital input (DI) display screen, pressing RESET for two seconds enables to cancel the latch for digital input (DI) in a batch.
Communication function also enables the cancellation.

5.2.17. How to Prevent Maximum Value Update by Motor Starting Current

For motor current monitoring, using the motor starting current delay function prevents the maximum value update of current, active power, reactive power, apparent power, power factor, and current unbalance rate and the alarm generating that are caused by motor starting current. To use the motor starting current delay function, you must set it. For details on the settings, refer to 3.8.
-The action with motor starting current delay function

Note1: For the motor starting current threshold, set a value lower than the lower limit value, considering a change in load current during operation.
Note2: When input current is below the motor starting current threshold, the minimum value update stops.

5. Operation

5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

5.2.18. Password Protection Setting

In the operating mode, when you press RESET and PHASE simultaneously for 2 seconds or more and then enter the password, the password protection can be set.
The password of the factory default is '0000.' If you enter the wrong password, the screen will return to the password input display, where the highest digit blinks.
To switch the screen from the password input display to the operating mode, press DISPLAY at the highest digit in password input.
When password protection is enabled, you must input the password when executing the following item such as setting mode switching or Max/Min value reset.

Password protected item

No.	Item
1	Enter the setting mode
2	Clear maximum and minimum values
3	Reset Wh, var, etc. to zero
4	Reset periodic active energy to zero
5	Adjust rolling demand time period
6	Clear rolling demand peak value
7	Reset operating time to zero

- Password protection setting
(1) Set the password protection.

(2) Change the password.
$\underset{\text { (Not change) }}{\longrightarrow} \underset{\text { (Change) }}{\longrightarrow}$
Note1: When you select "no", the screen returns to the operating mode. Note2: When you select "yES", the password appears.
(3) Input a new password
- Set the number of the blinking digit from the highest digit by pressing \oplus or Θ.
-Press SET to move the setting digit, blinking one, to a lower digit.
- Press DISPLAY to move the setting digit, blinking one, to a higher digit.
-Press SET at the lowest digit to determine the password change.
-The setting ranges from 0000 to 9999.

[^2]
5.2. Usage Depending on the Application (Alarm, Periodic Active Energy, Rolling Demand, Operating Time, Password, etc.)

5.2.19. Built-in Logging Function

This built-in logging function stores measured data as logging data in the internal non-volatile memory. The data to be stored as events occurred in this instrument are alarm data, the recorded time of the Max/Min value, and system log data. The stored data can be read from MODBUS RTU communication.
To use this function, MODBUS RTU communication is required. It is not available with MODBUS TCP communication.

- Built-in logging data type

The following table shows the logging data type used in this built-in logging function.

Type	Details	
Measurement data		
	The number of logging items	- Accumulated value data: 5 items -Data other than accumulated value: 15 items Total: Max. 20 items
	Internal memory logging period	$\cdot 30$ days (logging period: 15 minutes) . 60 days (logging period: 30 minutes) - 120 days (logging period: 60 minutes)
	The storing timing is as follows:	
	Logging period	Storing timing
	15 min	00/15/30/45 minutes past every hour
	30 min	00/30 minutes past every hour
	60 min	Every hour on the hour
Alarm data	For each alarm item set at the upper/lower limit alarm item 1 to 4 , the alarm item and its time data are stored when each event of alarm generating/cancellation or waiting for alarm cancellation occurs. Max. 100 records	
The recorded time of the Max/Min value	The time data of when the Max or Min value is updated is stored. 1 record for each item	
System log data	The time data of when an event such as setting change occurs is stored. Max. 100 records	

Note: The measurement data for logging has been grouped as LP01 and LP02 at this instrument side.
Selecting the group determines the logging items. If you want to set a pattern other than LP01 or LP02, LP00 is available for selecting any logging items to set up.

- Before using the built-in logging function

The present time and built-in logging settings are required beforehand.
For the present time setting and built-in logging setting, refer to $\mathbf{3 . 1 4}$ and 3.9 respectively.

- How to read the built-in logging data

The built-in logging data is read from MODBUS RTU communication.
For the method, refer to Electronic Multi-Measuring Instrument ME Series MODBUS Interface specifications (Ref. No. LSPM-0075)

If the following settings are changed, the measurement data for built-in logging will be deleted. Before the change, output the logging data, check that the data is correctly stored, and execute the setting change.

- Setting change of phase wire system
- Built-in logging data clear
-Logging item change in LP00 of the built-in logging item pattern
- Setting change of the present time over the logging period

When the present time is changed over the storing timing, a processing is executed to complement the measurement data of the corresponding time. Therefore, it is recommended to avoid the storing timing when the present time is changed. If the measurement data for built-in logging is monitored during the complemented processing, the data will be 0 . After a while, execute it again.

6. Others

6.1. Display Pattern List

When you set the display pattern in the setting menu 1 and the additional screens in the setting menu 3 , 7, and 8, the screen is switched from No. 1 in the following table in ascending order by pressing oispar
[When set to 3 -phase 4 -wire system]

Display pattern		Screen set by display pattern									
		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
P01	1st	A	A	A	W	A	DA				
	2nd	V	V	V	var	AN	DAN				
	3rd	W	var	VA	PF	Hz	V				
	4th	Wh	varh	VAh	Wh	Wh	Wh				
P02	1st	A1	DA1	V1N	W1	var1	VA1	PF1	A	A	DA
	2nd	A2	DA2	V2N	W2	var2	VA2	PF2	Hz	AN	DAN
	3rd	A3	DA3	V3N	W3	var3	VA3	PF3	W	var	VA
	4th	Aavg	DAavg	VLNavg	W Σ	var \sum	VAE	PF「	Wh	varh	VAh
P00	1st	Arbitrary 1	Arbitrary 1	Arbitrary 1	rbitrary 1						
	2nd	Arbitrary 1	Arbitrary 1	Arbitrary 1	Abitrary 1						
	3rd	Arbitrary 1	Arbitrary 1	Arbitrary 1	rbitrary 1						
	4th	Arbitrary 2	Arbitrary 2	Arbitrary 2	rbitrary 2						

Note1: For arbitrary 1, the selectable items are A, AN, DA, DAN, V, W, var, VA, PF, and Hz.
For arbitrary 2, Wh, -Wh, varh, and VAh are selectable.

Display pattern		Additional screen (Set in the setting menu 1, 3, 7, or 8)													
		No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17	No. 18	No. 19	No. 20	No. 21	No. 22	No. 23	
		Wh	Wh exported	varh	varh imported lead	varh exported lag	varhexportedlead	VAh	Periodic Wh1	Periodic Wh2	Periodic Wh3	Rolling demand			
		DW										Dvar	DVA		
$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ \hline 0 \end{array}$	1st		-	-	-	-	-	-	-	No. 1	No. 2	No. 3	Peak value		
$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{\mathbf{D}} \\ & \end{aligned}$	2nd	Wh	Wh exported	varh	varh imported lead	varh exported lag	varh exported lead	VAh	Periodic Wh1	Periodic Wh2	Periodic Wh3	DW Predict	Dvar Predict	DVA Predict	
$\begin{aligned} & \overrightarrow{\mathrm{O}} \\ & \frac{1}{3} \\ & 0 \end{aligned}$	3rd											$\begin{aligned} & \text { DW } \\ & \text { Last } \end{aligned}$	Dvar Last	DVA Last	
\|r	4th											DW Present	Dvar Present	DVA Present	

Display pattern		Additional screen (Set in the setting menu 1, 3, 7, or 8)								
		No. 24	No. 25	No. 29	No. 26	No. 27	No. 28	No. 30	No. 31	No. 32
		HI	$\mathrm{HIN}_{\mathrm{N}}$	HV	Unbalance rate	$\begin{array}{c\|} \hline \mathrm{DI} \\ \text { Status } \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{DO} \\ \text { Status } \end{gathered}$	Operating time 1	Operating time 2	$\begin{gathered} \mathrm{CO}_{2} \\ \text { equivalent } \\ \hline \end{gathered}$
	1st	1-phase value	N-phase value	1-phase value	-	DI	DO	-	-	-
	2nd	2-phase value	-	2-phase value	Aunb	-	-	hour 1	hour 2	CO_{2}
	3rd	3-phase value	-	3-phase value	Vunb	DI No.	DO No.	-	-	
	4th	Degree	Degree	Degree	unb	Contact status	Contact status	Operating time	Operating time	

Note 2: When you add an additional screen, the screen number is added.
Note 3: In the table, 'Wh' and 'varh' indicate active energy (imported) and reactive energy (imported lag) respectively.
Note 4: The additional screens of Wh, varh, and VAh of P00 are displayed by setting each item as display element.

6. Others

6.1. Display Pattern List

[When set to other than 3-phase 4-wire system]

Display pattern		Screen set by display pattern					
		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
P01	1st	A	A	A	W	A	
	2nd	V	V	V	var	DA	
	3rd	W	var	VA	PF	Hz	
	4th	Wh	varh	VAh	Wh	Wh	
P02	1st	A1	DA1	V12	W	A	A
	2nd	A2	DA2	V23	var	Hz	V
	3rd	A3	DA3	V31	PF	var	VA
	4th	Aavg	DAavg	Vavg	Wh	varh	VAh
P00	1st	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1		
	2nd	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1		
	3rd	Arbitrary 1	Arbitrary 1	Arbitrary 1	Arbitrary 1		
	4th	Arbitrary 2	Arbitrary 2	Arbitrary 2	Arbitrary 2		

Note1: For 1-phase 2-wire system, the display pattern of P02 is not selectable.
Note2: For arbitrary 1, the selectable items are A, DA, V, W, var, VA, PF, and Hz.
For arbitrary 2, Wh, -Wh, varh, and VAh are selectable.
Note3: The phase shown in the display pattern of P02 is displayed on the screen according to the phase wire system setting as the following table.

Phase wire system	1-phase 3-wire (1N2)	1-phase 3-wire (1N3)	3-phase 3-wire	
	1	1	1	1
	2	N	N	2
	3	2	3	3
Voltage	12	1 N	1 N	12
	23	2 N	3 N	23
	31	12	13	31

Display pattern		Additional screen (Set in the setting menu 1, 3, 7, or 8)												
		No. 7	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 21	No. 22	No. 23
					varh	varh	varh				Periodic		ling dema	and
		Wh	exported	varh	$\begin{gathered} \text { imported } \\ \text { lead } \\ \hline \end{gathered}$	$\begin{gathered} \text { exported } \\ \text { lag } \end{gathered}$	exported lead	VAh	Wh1	Wh2	Wh3	DW	Dvar	DVA
	1st	-	-	-	-	-	-	-	No. 1	No. 2	No. 3	Peak value		
	2nd	Wh	$\begin{gathered} \mathrm{Wh} \\ \text { exported } \end{gathered}$	varh	$\begin{gathered} \text { varh } \\ \text { imported } \\ \text { lead } \end{gathered}$	$\begin{array}{\|c\|} \text { varh } \\ \text { exported } \\ \text { lag } \end{array}$	$\begin{gathered} \text { varh } \\ \text { exported } \\ \text { lead } \end{gathered}$	VAh	Periodic Wh1	Periodic Wh2	Periodic Wh3	$\begin{gathered} \hline \text { DW } \\ \text { Predict } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Dvar } \\ \text { Predict } \\ \hline \end{array}$	DVA Predict
	3rd											$\begin{aligned} & \text { DW } \\ & \text { Last } \end{aligned}$	Dvar Last	DVA Last
	4th											DW Present	$\begin{array}{\|c\|} \hline \text { Dvar } \\ \text { Present } \end{array}$	DVA Present

Display pattern		Additional screen (Set in the setting menu 1, 3, 7, or 8)										
		No. 17	No. 18	No. 19	No. 20	No. 21	No. 22	No. 23	No. 24	No. 25	No. 26	No. 27
		Rolling demand			HI	HV	Unbalance rate	$\begin{gathered} \mathrm{DI} \\ \text { Status } \end{gathered}$	DOStatus	Operating time 1	Operating time 2	$\begin{gathered} \mathrm{CO}_{2} \\ \text { equivalent } \end{gathered}$
		DW	Dvar	DVA								
	1st	Peak value			1phase value	1 phase value	-	DI	DO	-	-	-
	2nd	$\begin{gathered} \text { DW } \\ \text { Predict } \end{gathered}$	Dvar Predict	DVA Predict	2-phase value	2-phase value	Aunb	-	-	hour 1	hour 2	CO_{2}
	3rd	$\begin{aligned} & \text { DW } \\ & \text { Last } \end{aligned}$	Dvar Last	DVA Last	3-phase value	-	Vunb	DI No.	DO No.	-	-	
	4th	DW Present	Dvar Present	DVA Present	Degree	Degree	unb	Contact status	Contact status	Operating time	Operating time	

6. Others

6.1. Display Pattern List

Note4: When you add an additional screen, the screen number is added.
Note5: In the table, 'Wh' and 'varh' indicate active energy (imported) and reactive energy (imported lag) respectively.
Note6: The additional screens of Wh, varh, and VAh of P00 are displayed by setting each item as display element.
Note7: The display of additional screens of No. 20 and 21 in the above table varies depending on the setting of the phase wire system as the following table.

Phase display		1-phase 2-wire	1-phase 3-wire	3-phase 3-wire _2CT	3-phase 3-wire _3CT
Harmonic current	1-phase value	\bigcirc	\bigcirc	O	\bigcirc
	2-phase value	-	-	-	\bigcirc
	3 -phase value	-	\bigcirc	\bigcirc	\bigcirc
Harmonic voltage	1-phase value	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	3-phase value	-	\bigcirc	\bigcirc	\bigcirc

6. Others

6.2. Standard Value

The standard value is calculated according to the measuring item as the following table.

Measuring element				Standard value *Note2
Current, Current demand				CT primary current setup value
Voltage	With VT	1-phase 2-wire, 3-phase 3-wire		VT primary voltage $\times 150 / 110$
		3-phase 4-wire		$\begin{aligned} & \hline \text { VT primary voltage (Phase) } \\ & \times 150 / 110 \end{aligned}$
				VT primary voltage (Line) $\times \sqrt{ } 3 \times 150 / 110$
	Direct input	1-phase 2-wire, 3-phase 3-wire	110 V	150 V
			220 V	300 V
			440 V	600 V
		1-phase 3-wire (Phase voltage/ Line voltage)	110/220 V	$150 \mathrm{~V} / 300 \mathrm{~V}$
			220/440 V	$300 \mathrm{~V} / 600 \mathrm{~V}$
		3-phase 4-wire (Phase voltage/ Line voltage)	63.5/110 V	100/150 V
			$\begin{aligned} & \hline 100 / 173 \mathrm{~V} \\ & 110 / 190 \mathrm{~V} \\ & \hline \end{aligned}$	150/300 V
			$\begin{aligned} & 220 / 380 \mathrm{~V} \\ & 230 / 400 \mathrm{~V} \\ & 240 / 415 \mathrm{~V} \\ & 254 / 440 \mathrm{~V} \end{aligned}$	300/600 V
			277/480 V	400/640 V
Active power, Rolling demand active power *Note1				VT ratio \times CT ratio \times Intrinsic power (100%) kW
Reactive power, Rolling demand reactive power *Note1				VT ratio \times CT ratio \times Intrinsic power (100\%) kvar
Apparent power, Rolling demand apparent power *Note1				VT ratio \times CT ratio \times Intrinsic power (100\%) kVA

Note1: For the setting of 'Without VT (Direct measurement input)', the VT ratio is 1 . For intrinsic power, refer to the right table.
Note2: The calculated value is round to the nearest number as the table in the next page.

- Intrinsic power value

Phase wire system	CT secondary current	Rated voltage		Intrinsic power value (100\%)
1-phase 2-wire	5 A	Direct input (Line voltage)	110 V	0.5 kW
			220 V	1.0 kW
			440 V	2.0 kW
		With VT (Line voltage)	$100 \mathrm{~V}, 110 \mathrm{~V}$	0.5 kW
			220 V	1.0 kW
	1 A	Direct input (Line voltage)	110 V	0.1 kW
			220 V	0.2 kW
			440 V	0.4 kW
		With VT (Line voltage)	$100 \mathrm{~V}, 110 \mathrm{~V}$	0.1 kW
			220 V	0.2 kW
1-phase 3-wire	5 A	Without VT (Line voltage)	220 V	1.0 kW
			440 V	2.0 kW
	1 A		220 V	0.2 kW
			440 V	0.4 kW
3-phase 3-wire	5 A	Direct input (Line voltage)	110 V	1.0 kW
			220 V	2.0 kW
			440 V	4.0 kW
		With VT (Line voltage)	$100 \mathrm{~V}, 110 \mathrm{~V}$	1.0 kW
			220 V	2.0 kW
	1 A	Direct input (Line voltage)	110 V	0.2 kW
			220 V	0.4 kW
			440 V	0.8 kW
		With VT (Line voltage)	$100 \mathrm{~V}, 110 \mathrm{~V}$	0.2 kW
			220 V	0.4 kW
3-phase 4-wire	5 A	Direct input	63.5/110 V	1.0 kW
			$\begin{aligned} & \hline 100 / 173 \mathrm{~V} \\ & 110 / 190 \mathrm{~V} \\ & \hline \end{aligned}$	2.0 kW
			$\begin{aligned} & \hline 220 / 380 \mathrm{~V} \\ & 230 / 400 \mathrm{~V} \\ & 240 / 415 \mathrm{~V} \\ & 254 / 440 \mathrm{~V} \\ & \hline \end{aligned}$	4.0 kW
			277/480 V	5.0 kW
		With VT (Phase voltage)	63.5 V	1.0 kW
			$\begin{aligned} & 100 \mathrm{~V}, 110 \mathrm{~V}, \\ & 115 \mathrm{~V}, 120 \mathrm{~V} \\ & \hline \end{aligned}$	2.0 kW
	1 A	Direct input	63.5/110 V	0.2 kW
			$\begin{aligned} & 100 / 173 \mathrm{~V} \\ & 110 / 190 \mathrm{~V} \\ & \hline \end{aligned}$	0.4 kW
			$\begin{aligned} & \hline 220 / 380 \mathrm{~V} \\ & 240 / 415 \mathrm{~V} \\ & 254 / 440 \mathrm{~V} \\ & \hline \end{aligned}$	0.8 kW
			277/480 V	1.0 kW
		With VT (Phase voltage)	63.5 V	0.2 kW
			$\begin{aligned} & 100 \mathrm{~V}, 110 \mathrm{~V}, \\ & 115 \mathrm{~V}, 120 \mathrm{~V} \end{aligned}$	0.4 kW

Note: For reactive power and apparent power, read 'kW' in the above table as 'kvar' and 'kVA' respectively.

6. Others

6.2. Standard Value

Standard value for current/current demand and STEP
Setting range: -10STEP to +3STEP
<Example> When the standard value is 100 A (OSTEP), the range is $45 \mathrm{~A}(-10$ STEP) to $160 \mathrm{~A}(+3$ STEP) .

Current standard value (1/3)

STEP	Unit: A
1	1 A
2	1.2 A
3	1.5 A
4	1.6 A
5	1.8 A
6	2 A
7	2.2 A
8	2.4 A
9	2.5 A
10	3 A
11	3.2 A
12	3.6 A
13	4 A
14	4.5 A
15	4.8 A
16	5 A
17	6 A
18	6.4 A
19	7.2 A
20	7.5 A
21	8 A
22	9 A
23	9.6 A
24	10 A
25	12 A
26	15 A
27	16 A
28	18 A
29	20 A
30	22 A
31	24 A
32	25 A
33	30 A
34	32 A
35	36 A
36	40 A
37	45 A
38	48 A
39	50 A
40	60 A
41	64 A
42	72 A
43	75 A
44	80 A
45	90 A
46	96 A
47	100 A
48	120 A
49	150 A
50	160 A

Current standard value (2/3)

STEP	Unit: A	Unit: kA
51	180 A	
52	200 A	
53	220 A	
54	240 A	
55	250 A	
56	300 A	
57	320 A	
58	360 A	
59	400 A	
60	450 A	
61	480 A	
62	500 A	
63	600 A	
64	640 A	
65	720 A	
66	750 A	
67	800 A	
68	900 A	
69	960 A	
70	1000 A	
71	1200 A	
72	1500 A	
73	1600 A	
74	1800 A	
75	2000 A	
76	2200 A	
77	2400 A	
78	2500 A	
79	3000 A	
80	3200 A	
81	3600 A	
82	4000 A	
83	4500 A	
84	4800 A	
85	5000 A	
86	6000 A	
87	6400 A	
88	7200 A	
89	7500 A	
90	8000 A	
91		9 kA
92		9.6 kA
93		10 kA
94		12 kA
95		15 kA
96		16 kA
97		18 kA
98		20 kA
99		22 kA
100		24 kA

Current standard value (3/3)

STEP	Unit: kA
101	25 kA
102	30 kA
103	32 kA
104	36 kA
105	40 kA

6. Others

6.2. Standard Value

Standard value for voltage and STEP
Setting range: -18STEP to +10 STEP
<Example> When the standard value is 100 V (OSTEP), the range is 20 V (-18 STEP) to 320 V (+10STEP).

Voltage standard value (1/3)		Voltage standard value (2/3)		
STEP	Unit: V	STEP	Unit: V	Unit: kV
1	15 V	51	2200 V	
2	16 V	52	2400 V	
3	18 V	53	2500 V	
4	20 V	54	3000 V	
5	22 V	55	3200 V	
6	24 V	56	3600 V	
7	25 V	57	4000 V	
8	30 V	58	4500 V	
9	32 V	59	4800 V	
10	36 V	60	5000 V	
11	40 V	61	6000 V	
12	45 V	62	6400 V	
13	48 V	63		7.2 kV
14	50 V	64		7.5 kV
15	60 V	65		8 kV
16	64 V	66		9 kV
17	72 V	67		9.6 kV
18	75 V	68		10 kV
19	80 V	69		12 kV
20	90 V	70		15 kV
21	96 V	71		16 kV
22	100 V	72		18 kV
23	120 V	73		20 kV
24	150 V	74		22 kV
25	160 V	75		24 kV
26	180 V	76		25 kV
27	200 V	77		30 kV
28	220 V	78		32 kV
29	240 V	79		36 kV
30	250 V	80		40 kV
31	300 V	81		45 kV
32	320 V	82		48 kV
33	360 V	83		50 kV
34	400 V	84		60 kV
35	450 V	85		64 kV
36	480 V	86		72 kV
37	500 V	87		75 kV
38	600 V	88		80 kV
39	640 V	89		90 kV
40	720 V	90		96 kV
41	750 V	91		100 kV
42	800 V	92		120 kV
43	900 V	93		150 kV
44	960 V	94		160 kV
45	1000 V	95		180 kV
46	1200 V	96		200 kV
47	1500 V	97		220 kV
48	1600 V	98		240 kV
49	1800 V	99		250 kV
50	2000 V	100		300 kV

Voltage standard value (3/3)

STEP	Unit: kV
101	320 kV
102	360 kV
103	400 kV
104	450 kV
105	480 kV
106	500 kV
107	600 kV
108	640 kV
109	720 kV
110	750 kV
111	800 kV
112	900 kV
113	960 kV
114	1000 kV
115	1200 kV
116	1500 kV
117	1600 kV
118	1800 kV
119	2000 kV
120	2200 kV

6. Others

6.2. Standard Value

Standard value for active/reactive/apparent power and STEP
Setting range: -18STEP to +3STEP
<Example> When the standard value is 1000 W (0STEP), the range is $200 \mathrm{~W}(-18 S T E P)$ to 1600 W (+3STEP).

Active power standard value (1/5)	
STEP	Unit: W
1	8 W
2	9 W
3	9.6 W
4	10 W
5	12 W
6	15 W
7	16 W
8	18 W
9	20 W
10	22 W
11	24 W
12	25 W
13	30 W
14	32 W
15	36 W
16	40 W
17	45 W
18	48 W
19	50 W
20	60 W
21	64 W
22	72 W
23	75 W
24	80 W
25	90 W
26	96 W
27	100 W
28	120 W
29	150 W
30	160 W
31	180 W
32	200 W
33	220 W
34	240 W
35	250 W
36	300 W
37	320 W
38	360 W
39	400 W
40	450 W
41	480 W
42	500 W
43	600 W
44	640 W
45	720 W
46	750 W
47	800 W
48	900 W
49	960 W
50	1000 W

Active power

standard value (2/5)
-

Active power
standard value (3/5)

Active power standard value (4/5)

STEP	Unit: MW
151	30 MW
152	32 MW
153	36 MW
154	40 MW
155	45 MW
156	48 MW
157	50 MW
158	60 MW
159	64 MW
201	4500 MW
202	4800 MW
203	5000 MW
204	6000 MW
205	6400 MW
206	7200 MW
207	7500 MW
208	8000 MW

Note: For reactive power and apparent power, read 'W' in the above table as 'var' and 'VA' respectively.

6. Others

6.3. Measuring Items and the Corresponding Display/Output

The following table shows measuring items and the corresponding display/output.

6. Others

6.3. Measuring Items and the Corresponding Display/Output

Note1: Each harmonic degree represents the odd degrees of the 1st to 31st RMS value and the 3rd to 31st content rate.
Note2: The imported lag and imported lead include the exported lead and exported lag respectively.
Note3: For the measuring items monitored by communication function, refer to the specifications of each communication function.
Note4: Phase angle can be measured only with the support function for determining incorrect wiring.
Note5: For 1-phase 3-wire system, the phases of measuring items are read as the following table.

Phase wire system	1-phase	2-phase	3-phase	12-phase	23-phase	31-phase
1-phase 3-wire (1N2)	1-phase	N-phase	2-phase	1N-phase	2N-phase	12-phase
1-phase 3-wire (1N3)	1-phase	N-phase	3-phase	1N-phase	3N-phase	13-phase

6. Others

6.4. Instrument Operation

The instrument operation in other than operating mode

Situation	Measurement	Display	Analog output	Alarm contact	Pulse output
For a few seconds just after turning on the auxiliary power *The backlight lights up and the LCD is off.	Not measure	Not display	There may be approximately 100% or more output until the internal voltage is stable.	Open	Not output
In the setting mode/ In the setting confirmation mode/ In the password protection screen	The action is the same in the operating mode	Not display measured values	The action is the same in the operating mode	The state before entering the setting mode or setting confirmation mode is retained.	The action is the same in the operating mode
Under power outage	Not measure	Not display	Not output	Open	Not output

The instrument operation under measurement input

Measuring element	Instrument action	
Current (A) Current demand (DA)	The CT secondary current setting is 5 A : When input current is below $0.005 \mathrm{~A}(0.1 \%), 0$ A is displayed. The CT secondary current setting is 1 A : When input current is below $0.005 \mathrm{~A}(0.5 \%), 0$ A is displayed.	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Voltage (V)	When input voltage (Line voltage) is below 11 $\mathrm{V}, 0 \mathrm{~V}$ is displayed. - In 1-phase 3 -wire system, when the voltage between P1 and P3 is below $22 \mathrm{~V}, 0 \mathrm{~V}$ is displayed. - In 3-phase 4-wire system, when phase voltage is below 11 V or line voltage is below $19 \mathrm{~V}, 0 \mathrm{~V}$ is displayed.	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Active power (W) Reactive power (var) Apparent power (VA)	- When each of three phases of current is 0 A or when each of three phases of voltage is $0 \mathrm{~V}, 0$ $\mathrm{W}, 0 \mathrm{var}$, and 0 VA are displayed. -When current N -phase is 0 A or when voltage N -phase is $0 \mathrm{~V}, 0 \mathrm{~W}, 0$ var, and 0 VA are displayed for each N -phase.	When the upper limit of display range (9999) is exceeded, the upper limit (9999) is displayed.
Power factor (PF)	-When each of three phases of current is 0 A or when each of three phases of voltage is $0 \mathrm{~V}, 1.0$ is displayed. -When current N -phase is 0 A or when voltage N -phase is $0 \mathrm{~V}, 1.0$ is displayed for each N -phase.	
Frequency (Hz)	-When voltage 1-phase is low voltage, -- - is displayed. Apply a voltage above approximately 22 V .	When frequency is below 44.5 Hz and above $99.5 \mathrm{~Hz},--$ - is displayed.
Harmonic current	For RMS value measurement: -When current is $0 \mathrm{~A}, 0 \mathrm{~A}$ is displayed. (for each phase) -When voltage 1 -phase is 0 V or when frequency is below $44.5 \mathrm{~Hz},--$ - is displayed for every phase.	For distortion ratio (content ratio) measurement: -When harmonic current $1^{\text {st }}$ is $0 \mathrm{~A}, 0 \mathrm{~A}$ is displayed. (for each phase) -When voltage 1 -phase is 0 V or when frequency is below $44.5 \mathrm{~Hz},--$ - is displayed for every phase.
Harmonic voltage	For RMS value measurement: -When voltage is $0 \mathrm{~V}, 0 \mathrm{~V}$ is displayed. (for each phase) -When voltage 1 -phase is 0 V or when frequency is below $44.5 \mathrm{~Hz},--$ - is displayed for every phase.	For distortion ratio (content ratio) measurement: -When voltage is $0 \mathrm{~V},--$ - is displayed. (for each phase) -When voltage 1 -phase is 0 V or when frequency is below $44.5 \mathrm{~Hz},--$ - is displayed for every phase.
Operating Time	When the time is over 999999-hour, it is fixed at 999999-hour.	

Note1: Current/voltage/active power input represents input to the instrument. It does not input to the primary side of VT/CT.
Note2: The expression of 'When current is 0 A' includes the case when the measured value described in the item of Current (A) is $0 A$.
Note3: The expression of 'When voltage is 0 V ' includes the case when the measured value described in the item of Voltage (V) is 0 V .
Note4: Use the instrument within the rating of the instrument.
-Analog output action

Output setting	Output range
Output limit is set	-1% to 101% of span
Output limit is not set	-5% to 105% of span

6. Others

6.5. Troubleshooting

If you observe abnormal sound, odor, smoke, or heat generation from the instrument, turn off the power at once. In addition, if you are considering sending the instrument in for repair, check the following points before it.

	Situation	Possible cause	Solution
$\begin{aligned} & \frac{\square}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \end{aligned}$	The display does not light up.	Auxiliary power is not applied to MA and MB terminals.	Apply auxiliary power supply.
	When the auxiliary power is applied, the display does not light up for a short time.	This is not an error. For a few seconds after charging the auxiliary power, the internal circuit is being initialized.	Use it as it is.
	The backlight does not light up.	The backlight may be set to auto off (Auto). *When it lights up by pressing any operation button, it is set to auto off.	When it is set to auto off, it automatically goes off in 5 minutes. Use it as it is or change the setting to ON (Hold). For details, refer to 3.7.
	The display becomes black.	It may become black due to static electricity.	It will go off after a while.
	The 'End' display remains.	It is in the setting mode.	Press the SET button.
	The current and voltage errors are large.	The settings for VT/Direct voltage and CT primary current may be incorrect.	Check the settings for VT/Direct voltage and CT primary current.
	The current and voltage are correct, but the active power and power factor errors are large.	The wiring for VT/CT and this instrument may be incorrect.	Check the wiring for VT/CT and this instrument.
	The power factor error is large.	If input current is smaller than the rating, the error will become large. (approximately 5% or less of the rated current)	This is not an error. Use it as it is, or if the error is troublesome, change the CT according to the actual current.
	The displayed active power is different from that calculated by multiplying the displayed current, voltage, and power factor.	If the current and voltage AC waveforms distort due to harmonics, the value will not be the same as the calculated value. (For current waveforms without harmonics, the calculated value matches with the displayed value.)	Use the instrument as it is.
	The total RMS value of harmonic current is quite different from the current value.	The distortion ratio (content rate) is well over 100%. (For measurement of inverter secondary side output)	Check the measured item.
	The current value measured by this instrument is different from that measured by other measuring instrument, such as a clamp meter. The difference exceeds an acceptable level.	If the comparative measuring instrument uses the average value method, the AC waveform will distort due to harmonics and the error of the comparative instrument will become large. (This instrument uses the RMS value method.)	Compare with a current value of a measuring instrument that uses the RMS value method.
	The analog output error is large.	When the wiring with the receiver side is long, the error may become large.	Execute zero/span adjustment for analog output. Refer to 4.3Test Menu 3: Zero/Span Adjustment for Analog Output.
	The pulse output error is large.	When the pulse width is set to 0.500 s or 1.000 s , if the pulse unit is set to the minimum value, the pulse output cannot track under large load conditions and it can result in a decrease in the pulse output number.	Review the settings for pulse unit and width.
	On the Max/Min value screen, a present value is displayed beyond the range of maximum and minimum values.	During the starting current delay time, the maximum value is not updated. Therefore, the displayed present value may exceed the maximum value.	Use the instrument as it is.

6.5. Troubleshooting

| Situation | Possible cause | Solution | |
| :--- | :--- | :--- | :--- | :--- |
| | In the setting mode, setting
 change is not possible. | When SETI blinks at the bottom left of
 the screen, it is in the setting
 confirmation mode. Therefore, setting
 change is not possible. | Enter the setting mode to change
 settings. |

6. Others

6.5. Troubleshooting

	Situation	Possible cause	Solution
0 0 0 3 3 0 0. 0. 0. 0. 0 0 0 0 0	Although LOG on the LCD lights up, the clock status goes off.	The present time is not set.	Set the present time, and the clock status will light up. After this instrument restarts by applying the auxiliary power or by shifting from the test mode to the operating mode, the present time setting is necessary. For details, refer to 3.14 Setting Menu CL: Preset Time Settings.

7. Installation

7.1. Dimensions

ME96SSRB-MB

[mm]
■Optional plug-in module
ME-4210-SS96B
ME-0040C-SS96
ME-0052-SS96

7. Installation

7.1. Dimensions

■Optional plug-in module
ME-0000MT-SS96

[mm]

Optional plug-in module ME-0000BU-SS96 ME-0000BU25-SS96

7. Installation

7.2. How to Install

7.2.1. Mounting Hole Dimensions

The right figure shows the hole drilling dimensions of the panel. Use a panel with a thickness of 1.6 mm to 4.0 mm for installation.

7.2.2. Mounting Position

The contrast of LCD display changes depending on the angle of view. Install the instrument in a location where you can easily see it.

View from the side

View from the top

Hole drilling dimensions of the panel

7.2.3. Mounting and Fixing

You will install the instrument on a panel according to the following procedure.

7.2.4. Optional Plug-in Module Installation

You will install the optional plug-in module to the instrument according to the following procedure.
(1)Remove the option cover.

(2) Install the optional plug-in module to the unit.

Protection sheet

The protection sheet is attached to the LCD display to prevent scratches on the display during installation. Before starting operation, remove the sheet. When you remove the sheet, the LCD display may light up due to static electricity generation. However, this is not abnormal. After a while, the lighting goes off due to self-discharge.

Note

Mounting position

When you install the instrument on the edge of the panel, check the work space for wiring to determine the mounting position.

Optional plug-in module

Before installing the optional plug-in module, turn off the power supply of auxiliary power. If you install it under power distribution, the instrument will not recognize it. In this case, you should get auxiliary power distribution/recovery or restart the instrument and then the instrument will recognize the optional plug-in module.

7. Installation

7.3. How to Connect Wiring

7.3.1. Specifications on the Applicable Electrical Wire

| Parts | Screw
 type | Wire for use | Tightening
 torque |
| :--- | :--- | :--- | :--- | :--- |
| The terminals of this
 instrument:
 - Auxiliary power
 - Voltage input
 - Current input
 - MODBUS RTU
 communication | M3 | - Used with crimp-type terminals: AWG 26 to 14
 *Two-wire connection is possible.
 Applicable crimp-type terminals: For M3 screw
 with an outer diameter of 6.0 mm or less. | |

7.3.2. Wiring of this Instrument

Be sure to securely tighten the terminal screws to the terminal block.

\triangle CAUTIN

- Do not connect three or more electric wires to one terminal. Otherwise, imperfect contact can cause heat generation or a fire.
- If you use a bare crimp-type terminal, you should secure a necessary insulation distance using an insulation tube not to expose the charging part for prevention of electric shock and short circuits.

7.3.3. Wiring of the Optional Plug-in Module

(1)Peel the wire tip or pressure-weld a rod terminal.
(2)Insert the wire with the lever pressed and then release the lever to connect.

7.3.4. Check the Connection

After wiring, check the following points:

- The electric wires are securely connected.
-There is no wrong wiring.
7.3. How to Connect Wiring

Do not work under live wires.

Do not connect the terminals or RJ 45 connectors under live line conditions. In addition, do not insert or remove a SD memory card under hot line conditions. Otherwise, there is danger of electric shock, burn injury, burnout of the instrument, or a fire.
We recommend that protection fuses be installed for VT and auxiliary power unit.
Do not open the secondary side of the CT circuit.
Connect the CT secondary-side signal correctly to the terminal for CT. If the CT were incorrectly connected or if the CT secondary side were open, it could result in a high voltage generation at the CT secondary side and insulation breakdown in the CT secondary winding. It might cause burnout.

Do not short the secondary side of the VT circuit.
Connect the VT secondary-side signal correctly to the terminal for VT.
If the VT were incorrectly connected or if a short occurred at the VT secondary side, an overcurrent would flow through the VT secondary side and it would cause burnout in the VT secondary winding. The burnout could spread to insulation breakdown in the primary winding. Finally, it might cause short circuit between phases.

Securely connect to the connection terminal.
Connect electrical wires properly to the connection terminal.
Otherwise, heat generation or measurement errors may occur.

Do not forget the connecting wires of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3}.

When a common wire is used for L side (load side) of CT circuit of three-phase instrument, it is necessary to short-circuit the C1, C2, and C3 terminals of this instrument.

Do not use improper electrical wires.
Be sure to use an appropriate size wire compatible with the rated current and voltage. The use of an inappropriate size wire may cause a fire.

> Do not pull connecting wires with a strong force.

If you pulled the terminal wires with a strong force, the input/output terminal part might come off. (Tensile load: 39.2 N or less)

Do not apply an abnormal voltage.
If a high-pressure device is subjected to the pressure test, ground the input lines of CT and VT secondary sides in order to prevent damage to this instrument. If a high voltage of 2000 V AC were applied to the instrument for over one minute, it might cause a failure.

Do not connect to Non-Connection (NC) terminal.
Do not connect to the Non-Connection (NC) terminal for the purpose of relay.
Supply voltage properly to the auxiliary power source.
Supply proper voltage to the auxiliary power terminal.
If an improper voltage were applied, it might cause a failure of the instrument or a fire.

7. Installation

7.4. Wiring Diagram

■ Rated voltage by phase wire system

Phase wire system	Type	Rated voltage	Figure
3-phase 4-wire	STAR	max 277 V AC (L-N) /480 V AC (L-L)	Figure 1
3 -phase 3-wire	DELTA	max 220 V AC (L-L)	Figure 2
	STAR	max 440 V AC (L-L)	Figure 3
1-phase 3-wire	-	max 220 V AC (L-N) /440 V AC (L-L)	Figure 4
1-phase 2-wire *Note1	DELTA	max 220 V AC (L-L)	Figure 5
	STAR	max 440 V AC (L-L)	Figure 6

Note1: For the DELTA connection circuit of 3-phase 3 wire system and transformer circuit of 1-phase 2-wire system, the maximum rating is 220 V AC .
For the STAR connection circuit of 3 -phase 4 -wire/3-phase 3 -wire system and 1 -phase 3 -wire circuit, the maximum rating is 440 VAC .

Figure1. 3-PHASE 4-WIRE(STAR)

Figure2. 3-PHASE 3-WIRE(DELTA)

Figure4. 1-PHASE 3-WIRE

Figure5. 1-PHASE 2-WIRE(DELTA)

Figure3. 3-PHASE 3-WIRE(STAR)

Figure6. 1-PHASE 2-WIRE(STAR)

7. Installation

7.4. Wiring Diagram

3-phase 4-wire system, Direct input

(1)Auxiliary power supply 100 V AC to 240 V AC or 100 V DC to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
■3-phase 4-wire system, With VT

(1)Auxiliary power supply

100 V AC to 240 V AC or 100 V DC to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.

7. Installation

7.4. Wiring Diagram

3-phase 3-wire system, Direct input, 2CT

(1)Auxiliary power supply

100 V AC to 240 V AC or 100 V DC to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
Note2: Do not connect the NC terminal.
■3-phase 3-wire system, With VT, 3CT

(1)Auxiliary power supply

100 V AC to 240 V AC or 100 V DC to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
Note2: Do not connect the NC terminal.

7. Installation

7.4. Wiring Diagram

1-phase 3-wire system

Protective
Earthing

${ }_{(-)}^{(+)}$
(1)Auxiliary power supply

100 V AC to 240 V AC or 100 V DC to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
Note2: Do not connect the NC terminal.
1-phase 2-wire system, With VT

(1)Auxiliary power supply

100 V AC to 240 V AC or 100 V DC to 240 V DC
(2)Fuse (recommendation)

Rated current: 0.5 A, Rated breaking capacity: 250 V AC 1,500 A / 250 V DC 1,500 A (a UL certified product)
(3)If MODBUS RTU devices do not have the SG terminal, the wiring between SG terminals is not necessary.
(4) Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at both ends of MODBUS RTU communication line.
Note1: For low voltage circuits, it is not necessary to ground the VT and CT secondary sides.
Note2: Do not connect the NC terminal.

7. Installation

7.4. Wiring Diagram

Optional plug-in module: ME-4210-SS96B
ME96SSRB-MB
ME96SSHB-MB
ME-4210-SS96B

■Optional plug-in module: ME-0040C-SS96
ME96SSRB-MB

7. Installation

7.4. Wiring Diagram

Optional plug-in module: ME-0052-SS96

ME96SSRB-MB

DI1-,DI2-,DI3-,DI4-,DI5-are connected inside.
Protective
Earthing

Optional plug-in module: ME-0000MT-SS96 ME96SSRB-MB

ME96SSHB-MB

■Optional plug-in module: ME-0000BU-SS96 ME-0000BU25-SS96
ME96SSRB-MB ME-0000BU-SS96 ME96SSHB-MB ME-0000BU25-SS96

Protective Earthing

7.4. Wiring Diagram

For Input

Note	1. The voltage input terminals of 3-phase 3-wire system are different from those of other systems. 2. If the VT and CT polarities are incorrect, measurement will not be correctly executed. 3. Do not wire the NC terminal. 4. For low voltage, it is not necessary to ground the VT and CT secondary sides. 5. Be sure to ground the earth terminal (e)) to use. The ground resistance is 100 ohm or less. Improper ground may cause a malfunction.

For Output

| 1. Pulse output lines, alarm output lines, and digital inp
 close to or bound together with power lines or high v
 the power lines or high voltage lines, refer to the
 distance. | |
| :---: | :---: | :---: |
| | Distance |
| | 300 mm or more |
| | 600 mm or more |

2. Analog output lines must not be placed close to or bound together with other power lines or input lines (for VT, CT, and auxiliary power supply). Use a shielded cable or twisted pair cable not to be affected by noise, surge, or induction. The connecting wires should be as short as possible.
3. The MODBUS RTU communication section and ME-4210-SS96B (optional plug-in module) are not insulated.

For MODBUS RTU Communication

| | 1. Use a shielded twisted pair cable for transmission signal line.
 *For recommended cables, refer to 8.3 MODBUS RTU Communication
 Specifications.
 2. Install 120-Ohm terminating resistors between terminals 'T/R+' and 'T/R-' for devices at
 both ends of MODBUS RTU communication line. |
| :--- | :--- | :--- |
| 3. Connect with wires as thick as possible to ground for low impedance. | |
| 4. The transmission signal lines of MODBUS RTU communication must not be placed close | |
| to or bound together with high voltage lines. | |
| 5. Perform one point grounding for the SLD terminal. | |

For CC-Link Communication

Note	1. Use a specified cable for CC-Link connection. For details, refer to 8.4 CC-Link Communication Specifications. It is not possible to mix dedicated cables and CC-Link dedicated high-performance cables. If they were mixed, correct data transmission would not be ensured. For termination resistor, the resistance value varies depending on the dedicated cable type. 2. Connect the shielded wire of CC-Link connection cable to 'SLD' and ground 'FG' (The ground resistance: 100Ω or less.). 'SLD' and 'FG' are connected inside the unit. 3. The CC-Link transmission line is with a small signal circuit. Install it separately from a strong electric circuit by 100 mm or more. When long wires lie parallel to each other, keep a distance of 300 mm or more. For use, ground the terminals. 4. Be sure to use a dedicated cable for CC-Link transmission line. According to the communication speed, observe the conditions for total wiring distance, inter-station distance, and termination resistance value. If the dedicated cable were not used or if the wiring conditions were not fulfilled, correct communication might not be executed. For the dedicated cable and the wiring conditions, refer to the user's manual of CC-Link master unit. 5. For units at both ends of CC-Link transmission line, be sure to install the termination resistors that come with the CC-Link master unit. 6. The CC-Link communication section and MODBUS RTU communication section are not insulated.

7. Installation

7.4. Wiring Diagram

For MODBUS TCP Communication

Note	1. For 100 Mbps communication with 100 BASE-TX connection, a communication error may occur depending on the installation environment due to the effect of high frequency noise from devices other than this instrument. To prevent the effect of high frequency noise, take the following measures against it when configuring a network system. (1) Wiring connection -Twisted pair cables must not be placed close to or bound together with the main circuit or power lines. - Put the twisted pair cable in a duct. (2) Communication method - Increase the communication retry count as necessary. -Replace with a 10 Mbps hub for connection use and communicate with a data transmission speed of 10 Mbps .

7. Installation

7.5. How to insert/remove SD memory card

When inserting the SD memory card:
Insert the SD memory card straight into the SD memory slot until you hear a click.

©CAUTON	- Be sure to use a SD memory card, EMU4-SD2GB, produced by Mitsubishi Electric Corporation. Using a SD memory card not produced by Mitsubishi Electric Corporation may cause a trouble such as data corruption in the card or system stop. - Insert the SD memory card with the write protect switch OFF. If the write protect switch is ON, the logging unit will not communicate with the card.

When removing the SD memory card:
(1)Check that SD C.LED is OFF.
(2) Insert the SD memory card until you hear a click.
(3)The SD memory card comes out automatically.

[^3]8. Specifications

8.1. Product Specifications

Type			ME96SSHB-MB	
Phase wire system			3-phase 4-wire, 3-phase 3- wire (3CT, 2CT), 1-phase 3- wire, 1-phase 2- wire (common use)	
Rating		Current	5 A AC, 1 A AC (common use)	
		Voltage	3-phase 4- wire: max 277/480 V AC 3-phase 3- wire: (DELTA) max 220 V AC , (STAR) max 440 V AC 1-phase 3- wire: max 220/440 V AC 1-phase 2- wire: (DELTA) max 220 V AC , (STAR) $\max 440 \mathrm{~V}$ AC	
		Frequency	50 Hz or 60 Hz (common use)	
Item			Measuring Item	Accuracy Class
Current (A)			A1, A2, A3, AN, Aavg	$\pm 0.2 \%$
	Current Demand (DA)		DA1, DA2, DA3, DAN, DAAvg	
	Voltage (V)		V12, V23, V31, Vavg (L-L), V1N, V2N, V3N, Vavg (L-N)	
	Active Power (W)		W1, W2, W3, $\mathrm{\Sigma W}$	$\pm 0.5 \%$
	Reactive Power (var)		var1, var2, var3, Evar	
	Apparent Power (VA)		VA1, VA2, VA3, 5 VA	
	Power Factor (PF)		PF1, PF2, PF3, 5 PF	
	Frequency (Hz)		Hz	$\pm 0.1 \%$
	Active Energy (Wh)		Imported, Exported	Class 0.5S (IEC62053-22)
	Reactive Energy (varh)		Imported lag, Imported lead, Exported lag, Exported lead	Class 1S (IEC62053-24)
	Apparent Energy (VAh)		Imported + Exported	$\pm 2.0 \%$
	Harmonic Current (HI)		Total, Individual (Odd)	$\pm 1.0 \%$
	Harmonic Voltage (HV)		Total, Individual (Odd)	
	Rolling Demand Active Power (DW)		Rolling block, Fixing block (Select either of them according to the settings.)	$\pm 0.5 \%$
	Rolling Demand Reactive Power (Dvar)		Rolling block, Fixing block (Select either of them according to the settings.)	$\pm 1.0 \%$
	Rolling Demand Apparent Power (DVA)		Rolling block, Fixing block (Select either of them according to the settings.)	
	Periodic Active Energy (Wh)		Periodic active energy 1, Periodic active energy 2, Periodic active energy 3	Class 0.5S
	Operating Time (h)		Operating time 1, Operating time 2	(Reference)
	Current Unbalance Rate (Aunb)		Aunb	(Reference)
	Voltage Unbalance Rate (Vunb)		Vunb	(Reference)
	CO_{2} Equivalent		kg	(Reference)
	Item		Specifications	
Analog output response time			1 second or less (Hz: 2 seconds or less, HI, HV: 5 seconds or less)	
Measuring method		Instantaneous Value	A, V: RMS value calculation; W, var, VA, Wh, varh, VAh: Digital multiplication; PF: Power ratio calculation; Hz: Zero-cross; HI, HV: FFT	
		Demand Value	DA: Thermal type calculation, DW, Dvar, DVA: Rolling demand calculation	
$\begin{aligned} & \frac{त}{0} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$	Display type		LCD with LED backlight	
	Number of display digits or segments		First to third line indication: 4 digits, Fourth line indication: 6 digits	
		Digital section	A, DA, V, W, var, VA, PF, DW, Dvar, DVA, Aunb, Vunb: 4 digits; Hz: 3 digits; Wh, varh, VAh: 9 digits (6-digit or 12-digit is also available.); Harmonic distortion ratio/content rate: 4 digits; Harmonic RMS value: 4 digits; Operating time: 6 digits; CO2 equivalent: 6 digits or 9 digits; Digital input/output: I/O	
	Display update time interval		$0.5 \mathrm{~s}, 1 \mathrm{~s}$ (selectable)	
Communication			MODBUS RTU communication	
	Logging mode		Automatic overwrite update	
	Logging data type	Measurement data *1	Measuring data and time data are stored at a data logging period specified. (15 $\mathrm{min}, 30 \mathrm{~min}, 60 \mathrm{~min}$)	
		Alarm data	Time data at alarm generating/cancellation and at waiting for alarm cancellation	
		The recorded time of the Max/Min value	Time data of when the maximum and minimum values are updated.	

8. Specifications

8.1. Product Specifications

Item			Specifications
	Number of logging items	Measurement data	Integrated value data: 5 items, Data other than integrated value: 15 items, Total: Max. 20 items
		Alarm data	The number of the set alarms
		The recorded time of the Max/Min value	The total is 19 elements: Current Max/Min (AVG), Line voltage Max/Min (AVG), Phase voltage Max/Min (AVG), Total active power Max/Min (AVG), Total power factor Max/Min (AVG), Frequency Max/Min (AVG), Total reactive power Max/Min, Total apparent power Max/Min, Total harmonic current RMS Max value, Harmonic line voltage distortion ratio Max total, Harmonic phase voltage distortion ratio Max total
	Internal memory logging period	Measurement data	30 days (Logging period: 15 minutes), 60 days (Logging period: 30 minutes), 120 days (Logging period: 60 minutes),
		Alarm data	100 records
		The recorded time of the Max/Min value	1 record for each Max/Min value
	System log data		100 records
	How to acquire logging data and system log data		Acquire the logging data via MODBUS RTU Communication
	Clock setting		By button operation on the screen, By MODBUS RTU communication, By acquiring the data from the logging unit
	Clock accuracy		± 1 minute per month, typical
	Power interruption backup	Setup value, Logging data, System log data	The non-volatile memory is used.
		Clock operation	The timing operation stops under power outage. The timing operation after power recovery is as follows: -When no ME-0000BU-SS96 or ME-0000BU25-SS96 is installed, the timing starts at the time before power outage. -When ME-0000BU-SS96 or ME-0000BU25-SS96 is installed, the timing starts at the time of the logging module.
Connectable optional plug-in module			ME-4210-SS96B, ME-0040C-SS96, ME-0052-SS96, ME-0000MT-SS96, ME-0000BU-SS96, ME-0000BU25-SS96
Ana	og output	Output specifications (Load)	4 mA to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(0} \Omega$)to 600Ω)
Pulse/Alarm output		Switch type	Semiconductor relay/No-voltage a-contact
		Contact capacity	35 V DC, 0.1 A
		Pulse width	$0.125 \mathrm{~s}, 0.5 \mathrm{~s}, 1.0 \mathrm{~s}$
Digital input (DI)		Contact capacity	24 V DC (19 V DC to 30 V DC), 7 mA or less
		Signal width	30 ms or more
Digital output (DO)		Switch type	Mechanical relay/No-voltage a-contact
		Contact capacity	35 V DC, 0.2 A
Power interruption backup			Non-volatile memory is used. (Item: Setup value, Max/Min value, Active energy, Reactive energy, Apparent energy, Periodic active energy, Rolling demand, Operating time)
VA Consumption		Voltage circuit	$0.1 \mathrm{VA} /$ phase (at 110 V AC), $0.2 \mathrm{VA} /$ phase (at 220 V AC), $0.4 \mathrm{VA} /$ phase (at 440 V AC)
		Current circuit	0.1 VA / phase
		Auxiliary power circuit	13 VA (at 110 V AC$), 14 \mathrm{VA}$ (at 220 V AC), 9 W (at 100 V DC)
Auxiliary power			100 to 240 V AC ($\pm 15 \%$), 100 to 240 V DC ($-30 \%+15 \%$)
Weight			0.5 kg
Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ [protrusion from cabinet]			$96 \times 96 \times 90 \mathrm{~mm}$ (depth of meter from housing mounting flange) [13 mm]
Mounting method			Embedded type
Operating temperature/humidity			$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (Daily average temperature: $35^{\circ} \mathrm{C}$ or less), 0 to 85% RH, Non condensing
Storage temperature/ humidity			$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Daily average temperature: $35^{\circ} \mathrm{C}$ or less), 0 to 85% RH, Non condensing

8. Specifications

8.1. Product Specifications

Note1: The accuracy class value represents the ratio to the rated value (100%).
Note2: For measurement where the harmonic distortion ratio (content rate) is 100% or more, the class can exceed $\pm 1.0 \%$. Note3: Harmonic current cannot be measured without voltage input.
Note4: If the conventional ME-4210-SS96 (Optional plug-in module) is used, the safety certification requirements of CE marking and UL standards cannot be met.
*1. Integrated values (Wh, varh, and VAh) are measured values in ME96SS. They are not differential values by logging period.

PMD characteristics (specified by IEC61557-12)

Type of characteristic	Characteristic value	Other complementary characteristic
Power quality assessment function according to 4.3	PMD- II	-
Classification of PMD according to 4.4	SD	-
Temperature	K55	-
Humidity + altitude	Standard conditions	-
Active power or active energy function (If function available) performance class	0.5	-

8. Specifications

8.2. Compatible Standards

Electromagnetic Compatibility

Emissions					
Radiated Emission	EN61326-1/ EN 55011/CISPR 11, FCC Part15 Subpart B Class A				
Conducted Emission	EN61326-1/ EN 55011/CISPR 11 FCC Part15 Subpart B Class A				
Harmonics Measurement	EN61000-3-2				
Flicker Meter Measurement	EN61000-3-3				
Electrostatic discharge Immunity EN61326-1,EN IEC 61000-6-2/EN61000-4-2 Radio Frequency Electromagnetic field Immunity EN61326-1,EN IEC 61000-6-2/EN61000-4-3 Electrical Fast Transient/Burst Immunity EN61326-1,EN IEC 61000-6-2/EN61000-4-4 Surge Immunity EN61326-1,EN IEC 61000-6-2/EN61000-4-5 Conducted Disturbances, Induced By Radio Frequency EN61326-1,EN IEC 61000-6-2/EN61000-4-6 Fields Immunity EN61326-1,EN IEC 61000-6-2/EN61000-4-8 Power Frequency Magnetic Field Immunity EN61326-EN IEC $61000-6-2 / E N 61000-4-$ Voltage Dips and Short Interruptions EN61326-1,EN IEC					11
:---					

Safety	
Europe	CE, as per EN61010-1: 2010 (3rd Edition)
U.S. and Canada	UL, cUL Recognized as per UL61010-1: 2012 (3rd Edition) IEC61010-1:2010 (3rd Edition)
Installation Category	III
Measuring Category	III
Pollution Degree	2

8.3. MODBUS RTU Communication Specifications

Item	Specifications
Physical interface	RS-485 2wires half duplex
Protocol	RTU mode
Synchronization method	Start-stop synchronization
Transmission wiring type	Multi-point bus (either directly on the trunk cable, forming a daisy- chain)
Baud rate	2400 bps, $4800 \mathrm{bps}, 9600 \mathrm{bps}, 19200 \mathrm{bps}, 38400 \mathrm{bps}$ (Default is 19200 bps)
Data bit	8
Stop bit	1 or 2 (Default is 1)
Parity	ODD,EVEN or NONE (Default is EVEN)
Slave address	1 to 255 (FFh) (Default is 1, 0 is for broadcast mode)
Distance	1200 m
Max. number	31
Response time	1 s or less (time to response after query data is received)
Terminate	120Ω 1/2 W
Recommended cable	Shielded twisted pair cable, AWG 24 to 14

8. Specifications
8.4. CC-Link Communication Specifications for optional plug-in module

Item	Specifications	
CC-Link version	Ver. 1.10	Ver. 2.00
Number of occupied stations	1 station, remote device station	Octuple
Expanded cyclic setting	-	1 to 64
Remote station number	$156 \mathrm{k}, 625 \mathrm{k}, 2.5 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{Mbps}$	
Transmission speed	Maximum number of stations per master station	42 stations (In case of connecting only remote device station occupied by 1 station) For details, refer to the specifications of the master station.
Connection cable	Use a dedicated cable. The termination resistance value varies depending on the dedicated cable type.	

The maximum transmission distance varies depending on the transmission speed and CC-Link version.
For details, refer to the following website:
CC-Link Partner Association: http://www.cc-link.org/
For the programming, refer to the following documents:

- Electronic Multi-Measuring Instrument Programming Manual (CC-Link) For ver. 1 remote device station (Ref. No. LEN080334)
- Electronic Multi-Measuring Instrument Programming Manual (CC-Link) For ver. 2 remote device station (Ref. No. LEN130391)

8.5. MODBUS TCP Communication Specifications for optional plug-in module

$\left.$| Item | Specifications |
| :--- | :--- |
| Interface | 1 port (10BASE-T/100BASE-TX) |
| Transmission method | Base band |
| Number of cascade
 connection stages *1 | Max. 4 stages (10BASE-T)
 Max. 2 stages (100BASE-TX) |
| Maximum node-to-node
 distance | 200 m |
| Maximum segment length
 *2 | 100 m |
| Connector applicable for
 external wiring | RJ45 |
| Cable | 10BASE-T | | Cable compliant with the IEEE802.3 10BASE-T Standard |
| :--- |
| *Unshielded twisted pair cable (UTP cable), Category 3 or more | \right\rvert\, | 100BASE-TX | Cable compliant with the IEEE802.3 100BASE-TX Standard
 *Shielded twisted pair cable (STP cable), Category 5 or more |
| :--- | :--- |
| Protocol | MODBUS TCP (Port number 502) |
| Number of simultaneously
 connection | Max. 4 |
| Supported function | Autonegotiation (10BASE-T/100BASE-TX automatically detected)
 Auto MDIX function (straight/crossover cable automatically detected) |

*1. It is for the use of repeater hubs. When using switching hubs, check the specifications of the hub you use.
*2. It is a distance between a hub and a node.
Read the following document as well as this user's manual.
-Electronic Multi-Measuring Instrument ME Series MODBUS Interface specifications (Ref. No. LSPM-0075)
8. Specifications

8.6. Logging Specifications for optional plug-in module

Item		Specifications			
Model		ME-0000BU-SS96		ME-0000BU25-SS96	
Logging mode		Automatic overwrite update			
Logging data type *1	Detailed data	Measuring data is stored at a detailed data logging period specified. ($1 \mathrm{~min}, 5 \mathrm{~min}, 10 \mathrm{~min}, 15 \mathrm{~min}, 30 \mathrm{~min}$) *Output as detailed data file			
	1-hour data	Measuring data is stored in a 1-hour period. *Output as 1-hour data file and 1-day data file			
Number of logging items	Detailed data	Max. 6 items		Max. 25 items	
	1-hour data	Max. 6 items			
Internal memory logging period	Detailed data	Logging period:1 minute Logging period:5 minutes Logging period:10 minutes Logging period:15 minutes Logging period:30 minutes	2 days 10 days 20 days 30 days 60 days	Logging period:1 minute Logging period:5 minutes Logging period:10 minutes Logging period:15 minutes Logging period:30 minutes	1 days 5 days 10 days 15 days 30 days
	1-hour data	400 days (about 13 months)		250 days (about 8 months)	
SD memory card (2GB) Logging period *2		10 years or more			
System log data		1200 records			
Logging data/System log data output format		CSV format (ASCII code)			
Power interruption backup		Backup with the built-in lithium battery Cumulative power interruption backup time: 5 years (Daily average temperature: $35^{\circ} \mathrm{C}$ or less) *The lithium battery service life time: 10 years (Daily average temperature: $35^{\circ} \mathrm{C}$ or less) It is not possible to replace the lithium battery, and you should consider the renewal.			
Setup values (Logging ID, Logging items, Detailed data logging period)		Stored in the non-volatile memory *Even if power failure occurs in battery voltage drop (BAT.LED is ON), data is not deleted.			
Logging data System log data		Stored in the volatile memory *When power failure occurs in battery voltage drop (BAT.LED is ON), data is deleted.			
Clock operation		*When power failure occurs in battery voltage drop (BAT.LED is ON), timing operation stops. After power recovery, the timing starts at 00:00 Jan. 1, 2016.			
Clock accuracy		± 1 minute per month, typical			
Destination storage medium *3		SD memory card (SD, SDHC)			
Optional supplies		SD memory card (EMU4-SD2GB) *3*4			

*1. Integrated values (Wh, varh, and VAh) are measured values in ME96SS. They are not differential values calculated by logging period.
*2. It represents a period until a 2 GB SD memory card capacity is exceeded under the constant connection.
*3. Be sure to use a SD memory card, EMU4-SD2GB, produced by Mitsubishi Electric Corporation. Using other SD memory cards not produced by Mitsubishi Electric Corporation may cause a trouble such as data corruption in the card or system stop. Regarding the use of commercially available SD memory cards, access our FA website. Note that the customer is responsible for verifying safe use of those SD memory cards.
*4. If you need some optional supplies, please consult with your supplier.
Read the following document as well as this user's manual.
-ME-0000BU-SS96 Logging function specifications (Ref. No. LSPM-0092)
-ME-0000BU25-SS96 Logging function specifications (Ref. No. LSPM-0106)

8. Specifications

8.7. Setting Table (Factory Default Settings and Customer's Notes Settings)

Setting menu No.		Setting item	Factory default setting	Customer's notes
1	1.1	Phase wire system	3P4 (3-phase 4-wire)	
		Display pattern	P01	
	1.2.1	Pattern P00	-	
	1.3	VT/Direct voltage	no (Without VT)	
	1.3.1	Direct voltage	220/380 V	
	1.3.2	VT secondary voltage	-	
	1.3.3	VT primary voltage	-	
	1.4	CT secondary current	5 A	
	1.4.1	CT primary current	5 A	
	1.5	Frequency	50 Hz	
	1.6	Rolling demand time period (Interval time period)	15 min	
	1.6.1	Subinterval time period	1 min	
	1.7	Current demand time period	0 s	
2	2.1	Communication method selection (When ME-0040C-SS96 or ME-0000MT-SS96 is installed)	CC or tcP (By option)	
	2.2	MODBUS RTU address	1	
	2.2.1	MODBUS RTU baud rate	19.2 kbps	
	2.2.2	MODBUS RTU parity	EVEn (even)	
	2.2.3	MODBUS RTU stop bit	1	
	2.3	CC-Link station number	1	
	2.3.1	CC-Link baud rate	156 kbps	
	2.3.2	CC-Link version setting	1.10	
	2.3.3	Communication reset	oFF (Without reset)	
	2.4	MODBUS TCP IP address	192.168.3.10	
		MODBUS TCP subnet mask	255.255.255.0	
		MODBUS TCP default gateway use	oFF (Not use)	
		MODBUS TCP default gateway address	127.0.0.1	
		Communication reset	oFF (Without reset)	
3	3.1	Active/Reactive Energy measurement	Combination I	
	3.2	Harmonics display	on (Display)	
	3.3	Unbalance rate	on (Display)	
4	4.1	Model display	(By model)	
	4.2	Version display	(By version)	
	4.3	Backlight brightness	3	
	4.4	Backlight Auto off/ON	Auto (Auto off)	
	4.5	Display update time	0.5 s	
5	5.1	Upper/Lower limit alarm item 1	non	
	5.1.1	Upper/Lower limit alarm value 1	-	
	5.2	Upper/Lower limit alarm item 2	non	
	5.2.1	Upper/Lower limit alarm value 2	-	
	5.3	Upper/Lower limit alarm item 3	non	
	5.3.1	Upper/Lower limit alarm value 3	-	
	5.4	Upper/Lower limit alarm item 4	non	
	5.4.1	Upper/Lower limit alarm value 4	-	
	5.5	Alarm delay time	-	
	5.6	Alarm reset method	-	
	5.7	Backlight blinking for alarm	-	

8. Specifications
8.7. Setting Table (Factory Default Settings and Customer's Notes Settings)

Setting menu No.		Setting item	Factory default setting	Customer's notes
5	5.8	Motor starting current delay function	oFF (Not display)	
	5.8.1	Motor starting current threshold	-	
	5.8.2	Motor starting p current delay time	-	
	5.9	Pulse/Alarm output function 1 *When ME-4210-SS96B is installed.	PULSE (Pulse output)	
	5.9.1	Pulse/Alarm output 1 output item	Active energy (Imported)	
	5.9.2	Pulse/Alarm output 1 pulse unit	$0.001 \mathrm{kWh} / \mathrm{pulse}$	
	$\begin{array}{\|c} \hline 5.1 \\ 0 \end{array}$	Pulse/Alarm output function 2 *When ME-4210-SS96B is installed.	AL (Alarm output)	
	5.10 .1	Pulse/Alarm output 2 output item	(
	5.10.2	Pulse/Alarm output 2 pulse unit	-	
	5.1	Pulse width	0.125 s	
6	6.1	Option selection * When ME-4210-SS96B, ME-0000BU- SS96 or ME-0000BU25-SS96 is installed.	Ao or Log.PLUG (By option)	
	6.2	Built-in logging data clear	no	
	6.2.1	Reconfirmation to clear	no	
	6.3	Built-in logging use	on	
	6.4	Built-in logging item pattern	LP01	
	6.5	Built-in data logging period	15 min	
	6.6	Analog output CH1 output item * When ME-4210-SS96B is installed.	Aavg	
	6.6.1	Detailed settings (1)	5 A (CT primary current)	
	6.6.2	Detailed settings (2)	-	
	6.7	Analog output CH2 output item * When ME-4210-SS96B is installed.	$\mathrm{V}_{\text {avg }}(\mathrm{L}-\mathrm{N})$	
	6.7.1	Detailed settings (1)	300 V (± 0 STEP)	
	6.7.2	Detailed settings (2)	-	
	6.8	Analog output CH3 output item * When ME-4210-SS96B is installed.	ᄃW	
	6.8.1	Detailed settings (1)	4000 W (± 0 STEP)	
	6.8.2	Detailed settings (2)	Single deflection	
	6.9	Analog output CH4 output item * When ME-4210-SS96B is installed.	EPF	
	6.9.1	Detailed settings (1)	0.5 (-0.5 to 1 to 0.5)	
	6.9.2	Detailed settings (2)	-	
	$\begin{gathered} \hline 6.1 \\ 0 \\ \hline \end{gathered}$	Analog output limit	oFF (No limit)	
	6.6	Logging ID * When ME-0000BU-SS96 or ME-0000BU25-SS96 is installed.	001	
	6.7	Logging data clear * When ME-0000BU-SS96 or ME-0000BU25-SS96 is installed.	no (Not clear)	
	6.7.1	Reconfirmation to clear logging data	no (Not clear)	
	6.8	Logging item pattern * When ME-0000BU-SS96 or ME-0000BU25-SS96 is installed.	LP01	
	6.9	Detailed logging data Logging period * When ME-0000BU-SS96 or ME-0000BU25-SS96 is installed.	15 min	

8. Specifications

8.7. Setting Table (Factory Default Settings and Customer's Notes Settings)

Setting menu No.		Setting item	Factory default setting	Customer's notes
7	7.1	Periodic active energy display	oFF (Not display)	
	7.1.1	Periodic active energy switching settings	non (Non-switching)	
	7.2	Rolling demand display	oFF (Not display)	
	7.2.1	Rolling demand time period	oFF (Manual)	
	7.3	Digital input/output display	oFF (Not display)	
	7.3.1	Digital input reset method	Auto (Automatic)	
8	8.1	Operating time display	oFF (Not display)	
	8.2	Operating time 1 count target	AUX (Auxiliary power)	
	8.2.1	Operating time 1 threshold	-	
	8.3	Operating time 2 count target	AUX (Auxiliary power)	
	8.3.1	Operating time 2 threshold	-	
	8.4	IEC mode settings	oFF (Normal mode)	
	8.5	CO_{2} equivalent display	oFF (Not display)	
	8.5.1	CO_{2} conversion rate	$0.5 \mathrm{~kg}-\mathrm{CO}_{2} / \mathrm{kWh}$	

9. Appendix

9.1. ME96SS Calculation Method (3-Phase Unbalanced System with Neutral)

The following table shows general calculation definitions of electric energy measurement this instrument employs.

9. Appendix

9.2. Optional parts

■SD memory card

Item	Specifications
Model	EMU4-SD2GB
Memory capacity	2 GB
Weight	2 g

Note: The unit of number is 'mm.'

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System
*The shaded parts indicate influential parts caused by incorrect wiring.
The dashed lines show incorrect wiring parts.

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.1. 3-phase 4-wire System

Note1: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument,
VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit.
Note : The active power polarity may be displayed in reverse depending on the load status (low power factor, unbalanced load) even when the connection is correct.

9. Appendix

9.3. A List of Examples for Incorrect Wiring Display

9.3.2. 3-phase 3-wire System

*The shaded parts indicate influential parts caused by incorrect wiring.
The dashed lines show incorrect wiring parts.

9. Appendix
9.3. A List of Examples for Incorrect Wiring Display

9.3.2. 3-phase 3-wire System

9. Appendix
9.3. A List of Examples for Incorrect Wiring Display

9.3.2. 3-phase 3-wire System

9. Appendix
9.3. A List of Examples for Incorrect Wiring Display

9.3.2. 3-phase 3-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.2. 3-phase 3-wire System

9. Appendix

9.3. A List of Examples for Incorrect Wiring Display

9.3.2. 3-phase 3-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.2. 3-phase 3-wire System

Note1: When the terminals ' C 1 ' and ' +C 1 ' of CT are connected to the terminals ' +C 1 ' and ' C 1 ' of the instrument in that order.
Note2: When the terminals ' C 3 ' and ' +C 3 ' of CT are connected to the terminals ' +C 3 ' and ' C 3 ' of the instrument in that order.
Note3: When 1 side CT and 3 side CT switch to each other, and in addition, the terminals 'C3' and ' +C 3 ' of CT are connected to the terminals ' +C 1 ' and ' C 1 ' of the instrument in that order.
Note4: When 1 side CT and 3 side CT switch to each other, and in addition, the terminals ' C 1 ' and ' +C 1 ' of CT are connected to the terminals ' +C 3 ' and ' C 3 ' of the instrument in that order.
Note5: When ' + C1' and ' C 3 'of CT are connected and it is connected to the ' +C 1 ' terminal of the instrument.
Note6: When ' C 1 ' and ' +C ' of CT are connected and it is connected to the ' +C 3 ' terminal of the instrument.
Note7: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument, VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit.

Note : The active power polarity may be displayed in reverse depending on the load status (low power factor, unbalanced load) even when the connection is correct.
Note : The above table shows incorrect wiring display examples of 3 -phase 3 -wire system (2CT). Those of 3-phase 3-wire system (3CT) are also the same. However, it is not possible to detect the incorrect wiring of the CT secondary side.

9. Appendix

9.3. A List of Examples for Incorrect Wiring Display

9.3.3. 1-phase 3-wire System
*The shaded parts indicate influential parts caused by incorrect wiring.
The dashed lines show incorrect wiring parts.

9.3. A List of Examples for Incorrect Wiring Display

9.3.3. 1-phase 3-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.3. 1-phase 3-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.3. 1-phase 3-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.3. 1-phase 3-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.3. 1-phase 3-wire System

9.3. A List of Examples for Incorrect Wiring Display

9.3.3. 1-phase 3-wire System

Note1: The above examples for incorrect wiring are typical. Extreme cases are excluded such as burnout or destruction of the instrument, VT, or CT caused by voltage application to a current circuit or current application to a voltage circuit.

MITSUBISHI Electronic Multi-Measuring Instrument

Service Network

Country/Region	Corporation Name	Address	Telephone
Australia	Mitsubishi Electric Australia Pty. Ltd.	348 Victoria Road, Rydalmere, N.S.W. 2116, Australia	+61-2-9684-7777
Algeria	Mec Casa	Rue iN 125 Hay-Es-Salem, 02000, W-Chlef, Algeria	+213-27798069
Bangladesh	PROGRESSIVE TRADING CORPORATION	HAQUE TOWER,2ND FLOOR,610/11,JUBILEE ROAD, CHITTAGONG, BANGLADESH	+880-31-624307
	ELECTRO MECH AUTOMATION\& ENGINEERING LTD.	SHATABDI CENTER, 12TH FLOOR, SUITES: 12-B, 292, INNER CIRCULAR ROAD, FAKIRA POOL, MOTIJHEEL, DHAKA-1000, BANGLADESH	+88-02-7192826
Belarus	Tehnikon	Oktyabrskaya 19, Off. 705, BY-220030 Minsk, Belarus	+375 (0)17/210 4626
Belgium	Koning \& Hartman B.V.	Woluwelaan 31, BE-1800 Vilvoorde, Belgium	+32 (0) / / 2570240
Brazil	Mitsubishi Electric do Brasil Comércio e Serviços Ltda.	Avenida Adelino Cardana, 29321 andar Bethaville, Barueri SP, Brasil	+55-11-4689-3000
Cambodia	DHINIMEX CO.,LTD	\#245, St. Tep Phan, Phnom P	+855-23-997-725
Central America	Automation International LLC	7050 W. Palmetto Park Road Suite \#15 PMB \#555, Boca Raton, FL 33433	+1-561-237-5228
Chile	Rhona S.A. (Main office)	Vte. Agua Santa 4211 Casilla 30-D (P.O. Box) Vina del Mar, Chile	+56-32-2-320-600
China	Mitsubishi Electric Automation (China) Ltd.	Mitsubishi Electric Automation Building, No. 1386 Hongqiao Road, Shanghai, China 200336	+86-21-2322-3030
	Mitsubishi Electric Automation (China) Ltd. Beijing	5/F,ONE INDIGO,20 Jiuxianqiao Road Chaoyang District,Beijijng, China 100016	+86-10-6518-8830
	Mitsubishi Electric Automation (China) Ltd. ShenZhen	Level 8, Galaxy World Tower B, 1 Yabao Road, Longgang District, Shenzhen, China 518129	+86-755-2399-8272
	Mitsubishi Electric Automation (China) Ltd. GuangZhou	Rm.1006, A1 Times E-Park, No.276-282, Hanxi Road East, Zhongcun Street, Panyu Distric, Guangzhou, China 510030	+86-20-8923-6730
	Mitsubishi Electric Automation (China) Ltd. ChengDu	1501-1503,15F, Guang-hua Centre Building-C, No. 98 North Guang Hua 3th Rd Chengdu, China 610000	+86-28-8446-8030
	Mitsubishi Electric Automation (Hong Kong) Ltd.	20/F., Cityplaza One, 1111 king's Road, Taikoo shing, Hong Kong	+852-2510-0555
Colombia	Proelectrico Representaciones S.A.	Carrera 42 № $75-367$ Bodega 109, Itagüi, Medellín, Antioquia, Colombia	+57-4-4441284
Czech Republic	AUTOCONT CONTROL SYSTEMS S.R.O	Technologická 374/6, CZ-708 00 Ostrava - Pustkovec	+420 595691150
Denmark	BEIJER ELECTRONICS A/S	LYKKEGARDSVEJ 17, DK-4000 ROSKILDE, Denmark	+45 (0)46/ 757666
Egypt	Cairo Electrical Group	9, Rostoum St. Garden City P.O. Box 165-11516 Maglis El-Shaab,Cairo - Egypt	+20-2-27961337
France	Mitsubishi Electric Europe B.V. French Branch	FR-92741 Nanterre Cedex	+33 (0)155685701
Germany	Mitsubishi Electric Europe B.V.	Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany	+49 (0) 21024860
Greece	KALAMARAKIS - SAPOUNAS S.A.	IONIAS \& NEROMILOU STR., CHAMOMILOS ACHARNES, ATHENS, 13678 Greece	+30-2102 406000
	UTECO	5, MAVROGENOUS STR., 18542 PIRAEUS, Greece	+30-211-1206-900
Hungary	Meltrade Ltd.	Fertö utca 14. HU-1107 Budapest, Hungary	+36 (0)1-431-9726
India	Mitsubishi Electric India Private Limited	2nd Floor, Tower A\&B, Cyber Greens, DLF Cyber City, DLF Phase-III, Gurgaon-122 022 Haryana,	+91-124-4630300
	Mitsubishi Electric India Private Limited Pune Sales Office	ICC-Devi Gaurav Technology Park, Unit no. 402, Fourth Floor, Survey no. 191-192 (P), Opp. Vallabh Nagar Bus Depot, Pune - 411018, Maharashtra, India	+91-20-68192100
	Mitsubishi Electric India Private Limited FA Center	204-209, 2nd Floor, 31FIVE, Corporate Road, Prahladnagar, Ahmedabad 380015,Gujarat. India	+91-79677-77888
Indonesia	PT.Mitsubishi Electric Indonesia	Gedung Jaya 8th floor, JL.MH. Thamrin No. 12 Jakarta Pusat 10340, Indonesia	+62-21-3192-6461
	P.T. Sahabat Indonesia	P.O.Box 5045 Kawasan Industri Pergudangan, Jakarta, Indonesia	+62-(0)21-6610651-9
Ireland	Mitsubishi Electric Europe B.V.	Westgate Business Park, Ballymount, IRL-Dublin 24, Ireland	+353 (0)1-4198800
Israel	Gino Industries Ltd.	26, Ophir Street IL-32235 Haifa, Israel	+972 (0)4-867-0656
Italy	Mitsubishi Electric Europe B.V.	Viale Colleoni 7, l-20041 Agrate Brianza (MI), Italy	+39 039-60531
Kazakhstan	Kazpromavtomatika	Ul. Zhambyla 28, KAZ - 100017 Karaganda	+7-7212-501000
Korea	Mitsubishi Electric Automation Korea Co., Ltd	9F Gangseo Hangang xi-tower A, 401 Yangcheon-ro, Gangseo-gu, Seoul 07528 Korea	+82-2-3660-9573
Laos	AROUNKIT CORPORATION IMPORTEXPORT SOLE CO.,LTD	SAPHANMO VILLAGE. SAYSETHA DISTRICT, VIENTIANE CAPITAL, LAOS	+856-20-415899
Lebanon	Comptoir d'Electricite Generale-Liban	Cebaco Center - Block A Autostrade Dora, P.O. Box 11-2597 Beirut - Lebanon	+961-1-240445
Lithuania	Rifas UAB	Tinklu 29A, LT-5300 Panevezys, Lithuania	+370 (0)45-582-728
Malaysia	Mittric Sdn Bhd	No. 5 Jalan Pemberita U1/49, Temasya Industrial Park, Glenmarie 40150 Shah Alam,Selangor, Malaysia	+603-5569-3748
Malta	ALFATRADE LTD	99 PAOLA HILL, PAOLA PLA 1702, Malta	+356 (0)21-697-816
Maroco	SCHIELE MAROC	KM 7,2 NOUVELLE ROUTE DE RABAT AIN SEBAA, 20600 Casablanca, Maroco	+21266145 1596
Myanmar	Peace Myanmar Electric Coo.,Ltd.	NO137/139 Botahtaung Pagoda Road, Botahtaung Town Ship 11161, Yangon,Myanmar	+95-(0)1-202589
Nepal	Watt $\&$ Volt House	KHA 2-65,Volt House Dillibazar Post Box:2108,Kathmandu,Nepal	+977-1-4411330
Netherlands	Imtech Marine \& Offshore B.V.	Sluisjesdijk 155, NL-3087 AG Rotterdam, Netherlands	+31 (0)10-487-19 11
North America	Mitsubishi Electric Automation, Inc.	500 Corporate Woods Parkway, Vernon Hills, IL 60061 USA	+847-478-2100
Norway	Scanelec AS	Leirvikasen 43B, NO-5179 Godvik, Norway	+47 (0)55-506000
Mexico	Mitsubishi Electric Automation, Inc. Mexico Branch	Blvd. Miguel de Cervantes Saavedra 301, Torre Norte Piso 5, Col. Ampliación Granada, Miguel Hidalgo, Ciudad de México, CP 11520, México	+52-55-3067-7511
Middle East Arab Countries \& Cyprus	Comptoir d'Electricite Generale-InternationalS.A.L.	Cebaco Center - Block A Autostrade Dora P.O. Box 11-1314 Beirut - Lebanon	+961-1-240430
Pakistan	Prince Electric Co.	2-P GULBERG II, LAHORE, 54600, PAKISTAN	$\begin{aligned} & \text { +92-42-575232, } \\ & 5753373 \\ & \hline \end{aligned}$
Peru	Rhona S.A. (Branch office)	Avenida Argentina 2201, Cercado de Lima	+51-1-464-4459
Philippines	MELCO Factory Automation Philippines Inc.	128, Lopez Rizal St., Brgy. Highway Hills, Mandaluyong City, Metro Manila, Phillippines	+63-(0)2-256-8042
	Edison Electric Integrated, Inc.	24th FI. Galleria Corporate Center, Edsa Cr. Ortigas Ave., Quezon City Metro Manila, Philippines	+63-(0)2-634-8691
Poland	Mitsubishi Electric Europe B.V. Polish Branch	Krakowska 48, 32-083 Balice, Poland	+48 123476500
Republic of Moldova	Intehsis SRL	bld. Traian 23/1, MD-2060 Kishinev, Moldova	+373 (0)22-66-4242
Romania	Sirius Trading \& Services SRL	RO-060841 Bucuresti, Sector 6 Aleea Lacul Morii Nr. 3	+40-(0)21-430-40-06
Russia	Mitsubishi Electric (Russia) LLC	2 bld.1, Letnikovskaya street, Moscow, 115114, Russia	+7495 721-2070
Saudi Arabia	Center of Electrical Goods	Al-Shuwayer St. Side way of Salahuddin Al-Ayoubi St. P.O. Box 15955 Riyadh 11454 - Saudi Arabia	+966-1-4770149
Singapore	Mitsubishi Electric Asia Pte. Ltd.	307 Alexandra Road, Mitsubishi Electric Building, Singapore 159943	+65-6473-2308
Slovakia	PROCONT, Presov	Kupelna 1/, SK - 08001 Presov, Slovakia	+421 (0)51-7580 611
	SIMAP	Jana Derku 1671, SK - 91101 Trencin, Slovakia	+421 (0)32 7430472
Slovenia	Inea RBT d.o.o.	Stegne 11, Sl-1000 Ljubljana, Slovenia	+386 (0)1-513-8116
South Africa	CBI-electric: low voltage	Private Bag 2016, ZA-1600 Isando Gauteng, South Africa	+27-(0)11-9282000
Spain	Mitsubishi Electric Europe B.V. Spanish Branch	Carretera de Rubi 76-80, E-08190 Sant Cugat del Vallés (Barcelona), Spain	+34 (0)93-565-3131
Sweden	Mitsubishi Electric Europe B.V. (Scandinavia)	Hedvig Möllers gata 6, 22355 Lund, Sweden	+46 (0)8-625-10-00
	Euro Energy Components AB	Järnvägsgatan 36, S-434 24 Kungsbacka, Sweden	+46 (0)300-690040
Switzerland	TriElec AG	Muehlentalstrasse 136, CH-8201 Schafthausen, Switzerland	+41-(0) $52-6258425$
Taiwan	Setsuyo Enterprise Co., Ltd	5th FI., No.105, Wu Kung 3rd, Wu-Ku Hsiang, Taipei, Taiwan, R.O.C.	+886-(0)2-2298-8889
Thailand	United Trading \& Import Co., Ltd.	$77 / 12$ Bamrungmuang Road,Klong Mahanak Pomprab Bangkok Thailand	+66-223-4220-3
Tunisia	MOTRA Electric	3, Résidence Imen, Avenue des Martyrs Mourouj III, 2074 - El Mourouj III Ben Arous, Tunisia	+216-71 474599
Turkey	Mitsubishi Electric Turkey A.Ș.	Şerifali Mahallesi Kale Sokak No: 41, 34775 Ümraniye, istanbul, Turkey	+90-216-969-2666
United Kingdom	Mitsubishi Electric Europe B.V.	Travellers Lane, UK-Hatfield, Herts. AL10 8XB, United Kingdom	+44 (0)1707-276100
Vietnam	Fierro Vignoli S.A.	Avda. Uruguay 1274 Montevideo Uruguay	+598-2-902-0808
	Mitsubishi Electric Vietnam Co.,Ltd. Head Office	11th \& 12th Floor, Viettel Tower B, 285 Cach Mang Thang 8 Street, Ward 12, District 10, Ho Chi Minh City, Vietnam	+84-28-3910-5945
	Mitsubishi Electric Vietnam Co.,Ltd. Hanoi Branch	24th Floor, Handico Tower, Pham Hung Road, khu do thi moi Me Tri Ha, Nam Tu Liem District, Hanoi City, Vietnam	+84-24-3937-8075

[^0]: According to 3.1 Setting Flow,
 complete the settings or shift to other setting menu.
 In addition, if you need to set the settings for CC-Link or MODBUS TCP communication, select the setting menu 2 again and then select 'CC' or 'Mb.rtu' at (1Communication setting selection.

[^1]: Note2: When the backlight blinking for alarm is set to 'on', the backlight blinks at generating alarm.
 Note3: On the Max/Min value screen, the present value, which is displayed at the middle line of digital display,
 ALARMand HI>or LO blink.

[^2]: Important
 If you forgot your password, you could not unlock the password by yourself in the field. Please contact your supplier.

[^3]: \triangle CaUITIN If you removed the SD memory card while the instrument communicates with the card, this might cause data corruption in the card or failure of the instrument or card. After checking that SD C.LED is OFF, remove the card.

